Article
Keywords:
l.s.c. map; selection; space of probability measures
Summary:
A negative answer to a question of E.A. Michael is given: A convex $G_\delta$-subset $Y$ of a Hilbert space is constructed together with a l.s.c. map $Y\to Y$ having closed convex values and no continuous selection.
References:
                        
[2] Michael E.A.: 
Some problems. in: Open Problems in Topology, J. van Mill, G.M. Reed, eds., North Holland, Amsterdam, 1990, pp.271-278. 
MR 1078653 | 
Zbl 1074.11018[3] Gutev V.G.: 
Continuous selections, $G_{\delta}$-subsets of Banach spaces and usco mappings. Comment. Math. Univ. Carolinae (1994), 35.3 533-538. 
MR 1307280[4] Gutev V.G., Valov V.: 
Continuous selections and $C$-spaces. Proc. Amer. Math. Soc. (2002), 130 233-242. 
MR 1855641 | 
Zbl 0977.54017[5] Repovš D., Semenov P.V.: 
Continuous selections of multivalued mappings. in: Recent Progress in General Topology, M. Hušek, J. van Mill, eds., Elsevier Science B.V., 2002, pp.424-461. 
MR 1970007[6] von Weizsäcker H.: 
A note on infinite dimensional convex sets. Math. Scand. (1976), 38 321-324. 
MR 0428009