Article
Keywords:
hypersurface; sphere; scalar curvature
Summary:
In this paper, by using Cheng-Yau's self-adjoint operator $\square$, we study the complete hypersurfaces in a sphere with constant scalar curvature.
References:
                        
[1] Alencar H., do Carmo M.P.: 
Hypersurfaces with constant mean curvature in spheres. Proc. Amer. Math. Soc. 120 (1994), 1223-1229. 
MR 1172943 | 
Zbl 0802.53017[2] Cheng S.Y., Yau S.T.: 
Hypersurfaces with constant scalar curvature. Math. Ann. 225 (1977), 195-204. 
MR 0431043 | 
Zbl 0349.53041[3] Hou Z.H.: 
Hypersurfaces in sphere with constant mean curvature. Proc. Amer. Math. Soc. 125 (1997), 1193-1196. 
MR 1363169[4] Lawson H.B., Jr.: 
Local rigidity theorems for minimal hypersurfaces. Ann. of Math. (2) 89 (1969), 187-197. 
MR 0238229 | 
Zbl 0174.24901[5] Li H.: 
Hypersurfaces with constant scalar curvature in space forms. Math. Ann. 305 (1996), 665-672. 
MR 1399710 | 
Zbl 0864.53040[6] Nomizu K., Smyth B.: 
A formula for Simon's type and hypersurfaces. J. Differential Geom. 3 (1969), 367-377. 
MR 0266109[7] Okumuru M.: 
Hypersurfaces and a pinching problem on the second fundamental tensor. Amer. J. Math. 96 (1974), 207-213. 
MR 0353216[8] Omori H.: 
Isometric immersions of Riemannian manifolds. J. Math. Soc. Japan 19 (1967), 205-214. 
MR 0215259 | 
Zbl 0154.21501[9] Simons J.: 
Minimal varieties in Riemannian manifolds. Ann. of Math. (2) 88 (1968), 62-105. 
MR 0233295 | 
Zbl 0181.49702[10] Yau S.T.: 
Harmonic functions on complete Riemannian manifolds. Comm. Pure Appl. Math. 28 (1975), 201-228. 
MR 0431040 | 
Zbl 0291.31002