| Title:
             | 
The maximal regular ideal of some commutative rings (English) | 
| Author:
             | 
Osba, Emad Abu | 
| Author:
             | 
Henriksen, Melvin | 
| Author:
             | 
Alkam, Osama | 
| Author:
             | 
Smith, F. A. | 
| Language:
             | 
English | 
| Journal:
             | 
Commentationes Mathematicae Universitatis Carolinae | 
| ISSN:
             | 
0010-2628 (print) | 
| ISSN:
             | 
1213-7243 (online) | 
| Volume:
             | 
47 | 
| Issue:
             | 
1 | 
| Year:
             | 
2006 | 
| Pages:
             | 
1-10 | 
| . | 
| Category:
             | 
math | 
| . | 
| Summary:
             | 
In 1950 in volume 1 of Proc. Amer. Math. Soc., B.  Brown and N.  McCoy showed that every (not necessarily commutative) ring $R$ has an ideal $\frak M (R)$ consisting of elements $a$ for which there is an $x$ such that $axa=a$, and maximal with respect to this property. Considering only the case when $R$ is commutative and has an identity element, it is often not easy to determine when $\frak M (R)$ is not just the zero ideal. We determine when this happens in a number of cases: Namely when at least one of $a$ or $1-a$ has a von Neumann inverse, when $R$ is a product of local rings (e.g., when $R$ is $\Bbb Z_{n}$ or $\Bbb Z_{n}[i]$), when $R$ is a polynomial or a power series ring, and when $R$ is the ring of all real-valued continuous functions on a topological space. (English) | 
| Keyword:
             | 
commutative rings | 
| Keyword:
             | 
von Neumann regular rings | 
| Keyword:
             | 
von Neumann local rings | 
| Keyword:
             | 
Gelfand rings | 
| Keyword:
             | 
polynomial rings | 
| Keyword:
             | 
power series rings | 
| Keyword:
             | 
rings of Gaussian integers (mod  $n$) | 
| Keyword:
             | 
prime and maximal ideals | 
| Keyword:
             | 
maximal regular ideals | 
| Keyword:
             | 
pure ideals | 
| Keyword:
             | 
quadratic residues | 
| Keyword:
             | 
Stone-Čech compactification | 
| Keyword:
             | 
$C(X)$ | 
| Keyword:
             | 
zerosets | 
| Keyword:
             | 
cozerosets | 
| Keyword:
             | 
$P$-spaces | 
| MSC:
             | 
10A10 | 
| MSC:
             | 
13A15 | 
| MSC:
             | 
13Fxx | 
| MSC:
             | 
16E50 | 
| MSC:
             | 
54G10 | 
| idZBL:
             | 
Zbl 1150.13300 | 
| idMR:
             | 
MR2223962 | 
| . | 
| Date available:
             | 
2009-05-05T16:55:06Z | 
| Last updated:
             | 
2012-04-30 | 
| Stable URL:
             | 
http://hdl.handle.net/10338.dmlcz/119569 | 
| . | 
| Reference:
             | 
[AHA04] Abu Osba E., Henriksen M., Alkam O.: Combining local and von Neumann regular rings.Comm. Algebra 32 (2004), 2639-2653. MR 2099923 | 
| Reference:
             | 
[AM69] Atiyah M., Macdonald J.: Introduction to Commutative Algebra.Addison-Wesley, Reading, Mass., 1969. Zbl 0238.13001, MR 0242802 | 
| Reference:
             | 
[B81] Brewer J.: Power Series Over Commutative Rings.Marcel Dekker, New York, 1981. Zbl 0476.13015, MR 0612477 | 
| Reference:
             | 
[BM50] Brown B., McCoy N.: The maximal regular ideal of a ring.Proc. Amer. Math. Soc. 1 (1950), 165-171. Zbl 0036.29702, MR 0034757 | 
| Reference:
             | 
[C84] Contessa M.: On certain classes of PM rings.Comm. Algebra 12 (1984), 1447-1469. Zbl 0545.13001, MR 0744456 | 
| Reference:
             | 
[DO71] DeMarco G., Orsatti A.: Commutative rings in which every maximal ideal is contained in a unique maximal ideal.Proc. Amer. Math. Soc. 30 (1971), 459-466. MR 0282962 | 
| Reference:
             | 
[GJ76] Gillman L., Jerison M.: Rings of Continuous Functions.Springer, New York, 1976. Zbl 0327.46040, MR 0407579 | 
| Reference:
             | 
[H77] Henriksen M.: Some sufficient conditions for the Jacobson radical of a commutative ring with identity to contain a prime ideal.Portugaliae Math. 36 (1977), 257-269. Zbl 0448.13002, MR 0597848 | 
| Reference:
             | 
[L58] Leveque W.: Topics in Number Theory.Addison-Wesley, Reading, Mass., 1958. Zbl 1009.11001 | 
| Reference:
             | 
[M74] McDonald B.R.: Finite Rings with Identity.Marcel Dekker, New York, 1974. Zbl 0294.16012, MR 0354768 | 
| . |