| Title: | Topological structure of the space of lower semi-continuous functions (English) | 
| Author: | Sakai, Katsuro | 
| Author: | Uehara, Shigenori | 
| Language: | English | 
| Journal: | Commentationes Mathematicae Universitatis Carolinae | 
| ISSN: | 0010-2628 (print) | 
| ISSN: | 1213-7243 (online) | 
| Volume: | 47 | 
| Issue: | 1 | 
| Year: | 2006 | 
| Pages: | 113-126 | 
| . | 
| Category: | math | 
| . | 
| Summary: | Let $\operatorname{L}(X)$ be the space of all lower semi-continuous extended real-valued functions on a Hausdorff space $X$, where, by identifying each $f$ with the epi-graph $\operatorname{epi}(f)$, $\operatorname{L}(X)$ is regarded the subspace of the space $\operatorname{Cld}^*_F(X \times \Bbb R)$ of all closed sets in $X \times \Bbb R$ with the Fell topology. Let $$ \operatorname{LSC}(X) = \{f\in \operatorname{L}(X) \mid f(X) \cap \Bbb R \neq \emptyset,  f(X)\subset (-\infty,\infty]\}  \text{ and} \ \operatorname{LSC}_{\operatorname{B}}(X) = \{f \in \operatorname{L}(X) \mid f(X) \text{ is a bounded subset of $\Bbb R$}\}. $$ We show that $\operatorname{L}(X)$ is homeomorphic to the Hilbert cube $Q = [-1,1]^\Bbb N$ if and only if $X$ is second countable, locally compact and infinite. In this case, it is proved that $(\operatorname{L}(X), \operatorname{LSC}(X), \operatorname{LSC}_{\operatorname{B}}(X))$ is homeomorphic to $(\operatorname{Cone} Q, Q\times (0,1), \Sigma \times (0,1))$ (resp. $(Q,s,\Sigma)$) if $X$ is compact (resp. $X$ is non-compact), where $\operatorname{Cone} Q = (Q \times \bold I)/(Q\times \{1\})$ is the cone over $Q$, $s = (-1,1)^\Bbb N$ is the pseudo-interior, $\Sigma = \{(x_i)_{i\in \Bbb N} \in Q \mid \sup_{i\in \Bbb N}|x_i| < 1\}$ is the radial-interior. (English) | 
| Keyword: | space of lower semi-continuous functions | 
| Keyword: | epi-graph | 
| Keyword: | Fell topology | 
| Keyword: | Hilbert cube | 
| Keyword: | pseudo-interior | 
| Keyword: | radial-interior | 
| MSC: | 54C35 | 
| MSC: | 57N20 | 
| idZBL: | Zbl 1150.57006 | 
| idMR: | MR2223971 | 
| . | 
| Date available: | 2009-05-05T16:56:00Z | 
| Last updated: | 2012-04-30 | 
| Stable URL: | http://hdl.handle.net/10338.dmlcz/119578 | 
| . | 
| Reference: | [1] Anderson R.D.: On sigma-compact subsets of infinite-dimensional spaces.unpublished. | 
| Reference: | [2] Beer G.: Topologies on Closed and Closed Convex Sets.Math. and its Appl. 268, Kluwer Acad. Publ., Dordrecht, 1993. Zbl 0792.54008, MR 1269778 | 
| Reference: | [3] Chapman T.A.: Dense sigma-compact subsets in infinite-dimensional manifolds.Trans. Amer. Math. Soc. 154 (1971), 399-426. MR 0283828 | 
| Reference: | [4] Curtis D.W.: Boundary sets in the Hilbert cube.Topology Appl. 20 (1985), 201-221. Zbl 0575.57008, MR 0804034 | 
| Reference: | [5] Fell J.M.G.: A Hausdorff topology for the closed subsets of a locally compact non-Hausdorff space.Proc. Amer. Math. Soc. 13 (1962), 472-476. Zbl 0106.15801, MR 0139135 | 
| Reference: | [6] Kubiś W., Sakai K., Yaguchi M.: Hyperspaces of separable Banach spaces with the Wijsman topology.Topology Appl. 148 (2005), 7-32. Zbl 1068.54011, MR 2118072 | 
| Reference: | [7] Lawson J.D.: Topological semilattices with small subsemilattices.J. London Math. Soc. (2) 1 (1969), 719-724. MR 0253301 | 
| Reference: | [8] van Mill J.: Infinite-Dimensional Topology, Prerequisites and Introduction.North-Holland Math. Library 43, Elsevier Sci. Publ. B.V., Amsterdam, 1989. Zbl 0663.57001, MR 0977744 | 
| Reference: | [9] Sakai K., Yang Z.: Hyperspaces of non-compact metrizable spaces which are homeomorphic to the Hilbert cube.Topology Appl. 127 (2002), 331-342. MR 1941172 | 
| Reference: | [10] Toruńczyk H.: On CE-images of the Hilbert cube and characterization of $Q$-manifolds.Fund. Math. 106 (1980), 31-40. MR 0585543 | 
| . |