| Title: | $\Sigma $-products of paracompact Čech-scattered spaces (English) | 
| Author: | Tanaka, Hidenori | 
| Language: | English | 
| Journal: | Commentationes Mathematicae Universitatis Carolinae | 
| ISSN: | 0010-2628 (print) | 
| ISSN: | 1213-7243 (online) | 
| Volume: | 47 | 
| Issue: | 1 | 
| Year: | 2006 | 
| Pages: | 127-140 | 
| . | 
| Category: | math | 
| . | 
| Summary: | In this paper, we shall discuss $\Sigma $-products of paracompact Čech-scattered spaces and show the following: (1) Let $\Sigma $ be a $\Sigma $-product of paracompact Čech-scattered spaces. If $\Sigma $ has countable tightness, then it is collectionwise normal. (2) If $\Sigma$ is a $\Sigma$-product of first countable, paracompact (subparacompact) Čech-scattered spaces, then it is shrinking (subshrinking). (English) | 
| Keyword: | $\Sigma $-product | 
| Keyword: | C-scattered | 
| Keyword: | Čech-scattered | 
| Keyword: | paracompact | 
| Keyword: | subparacompact | 
| Keyword: | collectionwise normal | 
| Keyword: | shrinking | 
| Keyword: | subshrinking | 
| Keyword: | countable tightness | 
| MSC: | 54B10 | 
| MSC: | 54D15 | 
| MSC: | 54D20 | 
| MSC: | 54G12 | 
| idZBL: | Zbl 1150.54011 | 
| idMR: | MR2223972 | 
| . | 
| Date available: | 2009-05-05T16:56:06Z | 
| Last updated: | 2012-04-30 | 
| Stable URL: | http://hdl.handle.net/10338.dmlcz/119579 | 
| . | 
| Reference: | [AMT] Aoki E., Mori N., Tanaka H.: Paracompactness and the Lindelöf property in countable products.Topology Appl. 146-147 (2005), 57-66. Zbl 1065.54013, MR 2107135 | 
| Reference: | [Co] Corson H.H.: Normality in subsets of product spaces.Amer. J. Math. 81 (1959), 785-796. Zbl 0095.37302, MR 0107222 | 
| Reference: | [E] Engelking R.: General Topology.Heldermann, Berlin, 1989. Zbl 0684.54001, MR 1039321 | 
| Reference: | [Gu] Gul'ko S.P.: On the properties of subsets of $\Sigma$-products.Soviet Math. Dokl. 18 (1977), 1438-1442. | 
| Reference: | [HaT] Hanaoka J., Tanaka H.: $\Sigma$-products of paracompact $\Cal{DC}$-like spaces.Topology Proc. 26 (2000-2001), 199-212. MR 1966992 | 
| Reference: | [HiT] Higuchi S., Tanaka H.: Covering properties in countable products, II.preprint. Zbl 1150.54010, MR 2281011 | 
| Reference: | [HZ] Hohti A., Ziqiu Y.: Countable products of Čech-scattered supercomplete spaces.Czechoslovak Math. J. 49 (1999), 569-583. Zbl 1003.54006, MR 1708354 | 
| Reference: | [K1] Kombarov A.P.: On $\Sigma$-products of topological spaces.Soviet Math. Dokl. 13 (1971), 1101-1104. Zbl 0243.54001, MR 0284969 | 
| Reference: | [K2] Kombarov A.P.: On tightness and normality of $\Sigma$-products.Soviet Math. Dokl. 19 (1978), 403-407. MR 0493933 | 
| Reference: | [KM] Kombarov A.P., Malykhin V.I.: On $\Sigma$-products.Soviet Math. Dokl. 14 (1973), 1780-1783. | 
| Reference: | [R1] Rudin M.E.: $\Sigma$-products of metric spaces are normal.preprint. | 
| Reference: | [R2] Rudin M.E.: The shrinking property.Canad. Math. Bull. 28 (1983), 385-388. Zbl 0536.54013, MR 0716576 | 
| Reference: | [TY] Tanaka H., Yajima Y.: $\Sigma$-products of paracompact C-scattered spaces.Topology Appl. 124 (2002), 39-46. MR 1926133 | 
| Reference: | [Te] Telgársky R.: C-scattered and paracompact spaces.Fund. Math. 73 (1971), 59-74. MR 0295293 | 
| Reference: | [Y1] Yajima Y.: On $\Sigma$-products of $\Sigma$-spaces.Fund. Math. 123 (1984), 29-37. Zbl 0556.54008, MR 0755616 | 
| Reference: | [Y2] Yajima Y.: The shrinking property of $\Sigma$-products.Tsukuba J. Math. 13 (1989), 83-98. Zbl 0697.54006, MR 1003593 | 
| . |