[AMT] Aoki E., Mori N., Tanaka H.: 
Paracompactness and the Lindelöf property in countable products. Topology Appl. 146-147 (2005), 57-66. 
MR 2107135 | 
Zbl 1065.54013[Co] Corson H.H.: 
Normality in subsets of product spaces. Amer. J. Math. 81 (1959), 785-796. 
MR 0107222 | 
Zbl 0095.37302[Gu] Gul'ko S.P.: On the properties of subsets of $\Sigma$-products. Soviet Math. Dokl. 18 (1977), 1438-1442.
[HaT] Hanaoka J., Tanaka H.: 
$\Sigma$-products of paracompact $\Cal{DC}$-like spaces. Topology Proc. 26 (2000-2001), 199-212. 
MR 1966992[HZ] Hohti A., Ziqiu Y.: 
Countable products of Čech-scattered supercomplete spaces. Czechoslovak Math. J. 49 (1999), 569-583. 
MR 1708354 | 
Zbl 1003.54006[K1] Kombarov A.P.: 
On $\Sigma$-products of topological spaces. Soviet Math. Dokl. 13 (1971), 1101-1104. 
MR 0284969 | 
Zbl 0243.54001[K2] Kombarov A.P.: 
On tightness and normality of $\Sigma$-products. Soviet Math. Dokl. 19 (1978), 403-407. 
MR 0493933[KM] Kombarov A.P., Malykhin V.I.: On $\Sigma$-products. Soviet Math. Dokl. 14 (1973), 1780-1783.
[R1] Rudin M.E.: $\Sigma$-products of metric spaces are normal. preprint.
[TY] Tanaka H., Yajima Y.: 
$\Sigma$-products of paracompact C-scattered spaces. Topology Appl. 124 (2002), 39-46. 
MR 1926133[Te] Telgársky R.: 
C-scattered and paracompact spaces. Fund. Math. 73 (1971), 59-74. 
MR 0295293[Y2] Yajima Y.: 
The shrinking property of $\Sigma$-products. Tsukuba J. Math. 13 (1989), 83-98. 
MR 1003593 | 
Zbl 0697.54006