Previous |  Up |  Next


periodic measure; variance
The principal term in the asymptotic expansion of the variance of the periodic measure of a ball in $\Bbb R^d$ under uniform random shift is proportional to the $(d+1)$st power of the grid scaling factor. This result remains valid for a bounded set in $\Bbb R^d$ with sufficiently smooth isotropic covariogram under a uniform random shift and an isotropic rotation, and the asymptotic term is proportional also to the $(d-1)$-dimensional measure of the object boundary. The related coefficients are calculated for various periodic grids constructed from affine sets.
[1] Bochner S., Chandrasekharan K.: Fourier Transform. Princeton University Press, Princeton, 1949. MR 0031582
[2] Borwein J.M., Choi K.-K.S.: On Dirichlet series for sums of squares. Ramanujan J. (2003), 7 95-127. MR 2035795 | Zbl 1038.11056
[3] Crandall R.E.: Fast evaluation of Epstein zeta function., 1998.
[4] Janáček J.: Errors of spatial grids estimators of volume and surface area. Acta Stereol. (1999), 18 389-396.
[5] Kendall D.G.: On the number of lattice points inside a random oval. Quart. J. Math. (1948), 19 1-26. MR 0024929 | Zbl 0031.11201
[6] Kendall D.G., Rankin R.A.: On the number of points of a given lattice in a random hypersphere. Quart. J. Math., Ser. (2) (1953), 4 178-189. MR 0057484 | Zbl 0052.14503
[7] Matérn B.: Precision of area estimation: a numerical study. J. Microsc. (1989), 153 269-283.
[8] Matheron G.: Les variables regionalisées et leur estimation. Masson et CIE, Paris, 1965.
[9] Rao R.C.: Linear Statistical Inference and its Applications. 2nd edition, John Wiley & Sons, New York, 1973. MR 0346957 | Zbl 0256.62002
[10] Rataj J.: On set covariance and three-point test sets. Czechoslovak Math. J. (2004), 54 205-214. MR 2040232 | Zbl 1049.52004
[11] Rijkstyn'sh E. Ja.: Asimptoticheskye razlozhenia integralov. Vol 1, Zinatne, Riga, 1974.
[12] Conway J.H., Sloane N.J.A.: Sphere Packings, Lattices and Groups. Springer, New York, 1998. Zbl 0915.52003
[13] Watson G.N.: A Treatise on the Theory of Bessel Functions. 2nd edition, Cambridge University Press, Cambridge, 1922. MR 0010746 | Zbl 0849.33001
Partner of
EuDML logo