| Title:
|
Variance of periodic measure of bounded set with random position (English) |
| Author:
|
Janáček, Jiří |
| Language:
|
English |
| Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
| ISSN:
|
0010-2628 (print) |
| ISSN:
|
1213-7243 (online) |
| Volume:
|
47 |
| Issue:
|
3 |
| Year:
|
2006 |
| Pages:
|
443-455 |
| . |
| Category:
|
math |
| . |
| Summary:
|
The principal term in the asymptotic expansion of the variance of the periodic measure of a ball in $\Bbb R^d$ under uniform random shift is proportional to the $(d+1)$st power of the grid scaling factor. This result remains valid for a bounded set in $\Bbb R^d$ with sufficiently smooth isotropic covariogram under a uniform random shift and an isotropic rotation, and the asymptotic term is proportional also to the $(d-1)$-dimensional measure of the object boundary. The related coefficients are calculated for various periodic grids constructed from affine sets. (English) |
| Keyword:
|
periodic measure |
| Keyword:
|
variance |
| MSC:
|
60E99 |
| MSC:
|
62D05 |
| MSC:
|
62E20 |
| MSC:
|
62J10 |
| idZBL:
|
Zbl 1150.62315 |
| idMR:
|
MR2281006 |
| . |
| Date available:
|
2009-05-05T16:58:33Z |
| Last updated:
|
2012-04-30 |
| Stable URL:
|
http://hdl.handle.net/10338.dmlcz/119605 |
| . |
| Reference:
|
[1] Bochner S., Chandrasekharan K.: Fourier Transform.Princeton University Press, Princeton, 1949. MR 0031582 |
| Reference:
|
[2] Borwein J.M., Choi K.-K.S.: On Dirichlet series for sums of squares.Ramanujan J. (2003), 7 95-127. Zbl 1038.11056, MR 2035795 |
| Reference:
|
[3] Crandall R.E.: Fast evaluation of Epstein zeta function.http://www.perfsci.com/free/techpapers/epstein.pdf, 1998. |
| Reference:
|
[4] Janáček J.: Errors of spatial grids estimators of volume and surface area.Acta Stereol. (1999), 18 389-396. |
| Reference:
|
[5] Kendall D.G.: On the number of lattice points inside a random oval.Quart. J. Math. (1948), 19 1-26. Zbl 0031.11201, MR 0024929 |
| Reference:
|
[6] Kendall D.G., Rankin R.A.: On the number of points of a given lattice in a random hypersphere.Quart. J. Math., Ser. (2) (1953), 4 178-189. Zbl 0052.14503, MR 0057484 |
| Reference:
|
[7] Matérn B.: Precision of area estimation: a numerical study.J. Microsc. (1989), 153 269-283. |
| Reference:
|
[8] Matheron G.: Les variables regionalisées et leur estimation.Masson et CIE, Paris, 1965. |
| Reference:
|
[9] Rao R.C.: Linear Statistical Inference and its Applications.2nd edition, John Wiley & Sons, New York, 1973. Zbl 0256.62002, MR 0346957 |
| Reference:
|
[10] Rataj J.: On set covariance and three-point test sets.Czechoslovak Math. J. (2004), 54 205-214. Zbl 1049.52004, MR 2040232 |
| Reference:
|
[11] Rijkstyn'sh E. Ja.: Asimptoticheskye razlozhenia integralov.Vol 1, Zinatne, Riga, 1974. |
| Reference:
|
[12] Conway J.H., Sloane N.J.A.: Sphere Packings, Lattices and Groups.Springer, New York, 1998. Zbl 0915.52003 |
| Reference:
|
[13] Watson G.N.: A Treatise on the Theory of Bessel Functions.2nd edition, Cambridge University Press, Cambridge, 1922. Zbl 0849.33001, MR 0010746 |
| . |