[1] Bauer H.: 
Harmonische Räume und ihre Potentialtheorie. Lecture Notes in Math. 22, Springer, Berlin-New York, 1966. 
MR 0210916 | 
Zbl 0142.38402[2] Björn A.: 
Characterizations of $p$-superharmonic functions on metric spaces. Studia Math. 169 (2005), 45-62. 
MR 2139641 | 
Zbl 1079.31006[3] Björn A.: 
A weak Kellogg property for quasiminimizers. Comment. Math. Helv. 81 (2006), 809-825. 
MR 2271223 | 
Zbl 1105.31007[4] Björn A., Björn J.: 
Boundary regularity for $p$-harmonic functions and solutions of the obstacle problem. J. Math. Soc. Japan 58 (2006), 1211-1232. 
MR 2276190 | 
Zbl 1211.35109[5] Björn A., Björn J., Shanmugalingam N.: 
The Dirichlet problem for $p$-harmonic functions on metric spaces. J. Reine Angew. Math. 556 (2003), 173-203. 
MR 1971145 | 
Zbl 1018.31004[6] Björn A., Björn J., Shanmugalingam N.: 
The Perron method for $p$-harmonic functions. J. Differential Equations 195 (2003), 398-429. 
MR 2016818 | 
Zbl 1039.35033[7] Björn J.: 
Boundary continuity for quasiminimizers on metric spaces. Illinois J. Math. 46 (2002), 383-403. 
MR 1936925 | 
Zbl 1026.49029[8] Björn J., MacManus P., Shanmugalingam N.: 
Fat sets and pointwise boundary estimates for $p$-harmonic functions in metric spaces. J. Anal. Math. 85 (2001), 339-369. 
MR 1869615 | 
Zbl 1003.31004[9] Björn J., Shanmugalingam N.: 
Poincaré inequalities, uniform domains and extension properties for Newton-Sobolev functions in metric spaces. to appear in J. Math. Anal. Appl. 
MR 2319654[10] Cheeger J.: 
Differentiability of Lipschitz functions on metric spaces. Geom. Funct. Anal. 9 (1999), 428-517. 
MR 1708448[11] Hajłasz, P., Koskela P.: 
Sobolev met Poincaré. Mem. Amer. Math. Soc. 145 (2000). 
MR 1683160[12] Heinonen J., Kilpeläinen T., Martio O.: 
Nonlinear Potential Theory of Degenerate Elliptic Equations. Oxford Univ. Press, Oxford, 1993. 
MR 1207810[13] Heinonen J., Koskela P.: 
Quasiconformal maps in metric spaces with controlled geometry. Acta Math. 181 (1998), 1-61. 
MR 1654771 | 
Zbl 0915.30018[14] Keith S., Zhong X.: 
The Poincaré inequality is an open ended condition. preprint, Jyväskylä, 2003. 
MR 2415381[15] Kilpeläinen T., Malý J.: 
The Wiener test and potential estimates for quasilinear elliptic equations. Acta Math. 172 (1994), 137-161. 
MR 1264000[16] Kinnunen J., Martio O.: 
Nonlinear potential theory on metric spaces. Illinois Math. J. 46 (2002), 857-883. 
MR 1951245[17] Kinnunen J., Martio O.: 
Potential theory of quasiminimizers. Ann. Acad. Sci. Fenn. Math. 28 (2003), 459-490. 
MR 1996447 | 
Zbl 1035.31007[18] Lehtola P.: 
An axiomatic approach to nonlinear potential theory. Ann. Acad. Sci. Fenn. Ser. A I Math. Dissertationes 62 (1986), 1-40. 
MR 0879323 | 
Zbl 0695.31014[19] Maz'ya V.G.: 
On the continuity at a boundary point of solutions of quasi-linear elliptic equations. Vestnik Leningrad. Univ. Mat. Mekh. Astronom. 25:13 (1970), 42-55 (Russian); English transl.: Vestnik Leningrad Univ. Math. 3 (1976), 225-242. 
MR 0274948[20] Perron O.: 
Eine neue Behandlung der ersten Randwertaufgabe für $\Delta u=0$. Math. Z. 18 (1923), 42-54. 
MR 1544619[21] Shanmugalingam N.: 
Newtonian spaces: An extension of Sobolev spaces to metric measure spaces. Rev. Mat. Iberoamericana 16 (2000), 243-279. 
MR 1809341 | 
Zbl 0974.46038[22] Shanmugalingam N.: 
Harmonic functions on metric spaces. Illinois J. Math. 45 (2001), 1021-1050. 
MR 1879250 | 
Zbl 0989.31003[23] Shanmugalingam N.: 
Some convergence results for $p$-harmonic functions on metric measure spaces. Proc. London Math. Soc. 87 (2003), 226-246. 
MR 1978575 | 
Zbl 1034.31006[24] Wiener N.: Certain notions in potential theory. J. Math. Phys. 3 (1924), 24-51.
[25] Wiener N.: The Dirichlet problem. J. Math. Phys. 3 (1924), 127-146.