[1] Chajda I.: 
Pseudosemirings induced by ortholattices. Czechoslovak Math. J., 46 (1996), 405-411. 
MR 1408295 | 
Zbl 0879.06003[2] Chajda I., Eigenthaler G.: 
A note on orthopseudorings and Boolean quasirings. Österr. Akad. Wiss. Math.-Natur., Kl., Sitzungsber. II, 207 (1998), 83-94. 
MR 1749914 | 
Zbl 1040.06003[3] Dorfer D., Dvurečenskij A., Länger H.: 
Symmetrical difference in orthomodular lattices. Math. Slovaca 46 (1996), 435-444. 
MR 1451034[4] Dorminger D., Länger H., Mączyński M.: 
The logic induced by a system of homomorphisms and its various algebraic characterizations. Demonstratio Math. 30 (1997), 215-232. 
MR 1446613[5] Gardner B.J., Parmenter M.M.: 
Directoids and directed groups. Algebra Universalis 33 (1995), 254-273. 
MR 1318990 | 
Zbl 0832.06005[6] Ježek J., Quackenbush R.: 
Directoids: algebraic models of up-directed sets. Algebra Universalis 27 (1990), 49-69. 
MR 1025835[7] Kopytov V.M., Dimitrov Z.I.: 
On directed groups. Siberian Math. J. 30 (1989), 895-902; (Russian original: Sibirsk. Mat. Zh. 30 (1988), no. 6, 78-86). 
MR 1043436 | 
Zbl 0714.06007[8] Leutola K., Nieminen J.: 
Posets and generalized lattices. Algebra Universalis 16 (1983), 344-354. 
MR 0695054 | 
Zbl 0514.06003[9] Nieminen J.: 
On distributive and modular $\chi$-lattices. Yokohama Math. J. 31 (1983), 13-20. 
MR 0734154 | 
Zbl 0532.06002[10] Snášel V.: 
$\lambda$-lattices. Math. Bohemica 122 (1997), 367-372. 
MR 1600648