| Title: | On approximation of functions by certain operators preserving $x^2$ (English) | 
| Author: | Rempulska, Lucyna | 
| Author: | Tomczak, Karolina | 
| Language: | English | 
| Journal: | Commentationes Mathematicae Universitatis Carolinae | 
| ISSN: | 0010-2628 (print) | 
| ISSN: | 1213-7243 (online) | 
| Volume: | 49 | 
| Issue: | 4 | 
| Year: | 2008 | 
| Pages: | 579-593 | 
| . | 
| Category: | math | 
| . | 
| Summary: | In this paper we extend the Duman-King idea of approximation of functions by positive linear operators preserving $e_k (x)=x^k$, $k=0,2$. Using a modification of certain operators $L_n$ preserving $e_0$ and $e_1$, we introduce operators $L_n^*$ which preserve $e_0$ and $e_2$ and next we define operators $L_{n;r}^{*}$ for $r$-times differentiable functions. We show that $L_n^*$ and $L_{n;r}^{*}$ have better approximation properties than $L_n$ and $L_{n;r}$. (English) | 
| Keyword: | positive linear operators | 
| Keyword: | polynomial weighted space | 
| Keyword: | degree of approximation | 
| MSC: | 41A25 | 
| MSC: | 41A36 | 
| idZBL: | Zbl 1212.41054 | 
| idMR: | MR2493939 | 
| . | 
| Date available: | 2009-05-05T17:13:16Z | 
| Last updated: | 2013-09-22 | 
| Stable URL: | http://hdl.handle.net/10338.dmlcz/119747 | 
| . | 
| Reference: | [1] Baskakov V.A.: An example of a sequence of linear positive operators in the space of continuous functions.Dokl. Akad. Nauk SSSR 113 (1957), 249-251. MR 0094640 | 
| Reference: | [2] Becker M.: Global approximation theorems for Szász-Mirakyan and Baskakov operators in polynomial weight spaces.Indiana Univ. Math. J. 27 1 (1978), 127-142. MR 0493079, 10.1512/iumj.1978.27.27011 | 
| Reference: | [3] De Vore R.A.: The Approximation of Continuous Functions by Positive Linear Operators.Springer, Berlin, New York, 1972. MR 0420083 | 
| Reference: | [4] De Vore R.A., Lorentz G.G.: Constructive Approximation.Springer, Berlin, New York, 1993. MR 1261635 | 
| Reference: | [5] Ditzian Z., Totik V.: Moduli of Smoothness.Springer, New York, 1987. Zbl 0715.46043, MR 0914149 | 
| Reference: | [6] Duman O., Özarslan M.A.: MKZ type operators providing a better estimation on $[1/2,1)$.Canad. Math. Bull. 50 (2007), 434-439. Zbl 1132.41318, MR 2344178, 10.4153/CMB-2007-042-8 | 
| Reference: | [7] Duman O., Özarslan M.A.: Szász-Mirakyan type operators providing a better error estimation.Appl. Math. Lett. 20 12 (2007), 1184-1188. MR 2384243, 10.1016/j.aml.2006.10.007 | 
| Reference: | [8] King J.P.: Positive linear operators which preserve $x^2$.Acta Math. Hungar. 99 (2003), 203-208. Zbl 1027.41028, MR 1973095, 10.1023/A:1024571126455 | 
| Reference: | [9] Kirov G.H.: A generalization of the Bernstein polynomials.Math. Balcanica 2 2 (1992), 147-153. Zbl 0838.41017, MR 1182946 | 
| Reference: | [10] Kirov G.H., Popova L.: A generalization of the linear positive operators.Math. Balcanica 7 2 (1993), 149-162. Zbl 0833.41016, MR 1270375 | 
| Reference: | [11] Rempulska L., Walczak Z.: Modified Szász-Mirakyan operators.Math. Balcanica 18 (2004), 53-63. Zbl 1079.41022, MR 2076077 | 
| Reference: | [12] Rempulska L., Skorupka M.: Approximation properties of modified gamma operators.Integral Transforms Spec. Funct. 18 9-10 (2007), 653-662. Zbl 1148.41025, MR 2356794, 10.1080/10652460701510527 | 
| Reference: | [13] Rempulska L., Skorupka M.: On approximation by Post-Widder and Stancu operators preserving $x^2$.Kyung. Math. J., to appear. MR 2527373 | 
| Reference: | [14] Stancu D.D.: On the beta approximating operators of second kind.Rev. Anal. Numér. Théor. Approx. 24 (1-2) (1995), 231-239. Zbl 0856.41019, MR 1608424 | 
| . |