| Title: | On weak solutions of steady Navier-Stokes equations for monatomic gas (English) | 
| Author: | Březina, J. | 
| Author: | Novotný, A. | 
| Language: | English | 
| Journal: | Commentationes Mathematicae Universitatis Carolinae | 
| ISSN: | 0010-2628 (print) | 
| ISSN: | 1213-7243 (online) | 
| Volume: | 49 | 
| Issue: | 4 | 
| Year: | 2008 | 
| Pages: | 611-632 | 
| . | 
| Category: | math | 
| . | 
| Summary: | We use $L^\infty$ estimates for the inverse Laplacian of the pressure introduced by Plotnikov, Sokolowski and Frehse, Goj, Steinhauer together with the nonlinear potential theory due to Adams, Hedberg, to get a priori estimates and to prove existence of weak solutions to steady isentropic Navier-Stokes equations with the adiabatic constant $\gamma>{1\over3}(1+\sqrt{13})\approx 1.53$ for the flows powered by volume non-potential forces and with $\gamma>{1\over8}(3+\sqrt{41}) \approx1.175$ for the flows powered by potential forces and arbitrary non-volume forces. According to our knowledge, it is the first result that treats in three dimensions existence of weak solutions in the physically relevant case $\gamma\le{5\over3}$ with arbitrary large external data. The solutions are constructed in a rectangular domain with periodic boundary conditions. (English) | 
| Keyword: | steady compressible Navier-Stokes equations | 
| Keyword: | periodic domain | 
| Keyword: | isentropic flow | 
| Keyword: | existence of the weak solution | 
| Keyword: | potential theory | 
| MSC: | 35D05 | 
| MSC: | 35Q30 | 
| MSC: | 76D05 | 
| MSC: | 76N15 | 
| idZBL: | Zbl 1212.35345 | 
| idMR: | MR2493941 | 
| . | 
| Date available: | 2009-05-05T17:13:26Z | 
| Last updated: | 2013-09-22 | 
| Stable URL: | http://hdl.handle.net/10338.dmlcz/119749 | 
| . | 
| Reference: | [1] Adams D.R., Hedberg L.I.: Function Spaces and Potential Theory.Springer, Berlin, 1996. Zbl 0834.46021, MR 1411441 | 
| Reference: | [2] Calderon A.P.: Lebesgue spaces of differentiable functions and distributions.in Partial Differential Equations, Proc. Sympos. Pure Math., no. 4, Amer. Math. Soc., Providence, Rhode Island, 1961, pp.33-49. Zbl 0195.41103, MR 0143037 | 
| Reference: | [3] DiPerna R.J., Lions P.-L.: Ordinary differential equations, transport theory and Sobolev spaces.Invent. Math. 98 (1989), 511-547. Zbl 0696.34049, MR 1022305, 10.1007/BF01393835 | 
| Reference: | [4] Ebin D.B.: Viscous fluids in a domain with frictionless boundary.in Global Analysis - Analysis on Manifolds, H. Kurke, J. Mecke, H. Triebel and R. Thiele, Eds., Teubner, Leipzig, 1983, pp.93-110. Zbl 0525.58030, MR 0730604 | 
| Reference: | [5] Feireisl E.: On compactness of solutions to the compressible isentropic Navier-Stokes equations when the density is not square integrable.Comment. Math. Univ. Carolin. 42 1 (2001), 83-98. Zbl 1115.35096, MR 1825374 | 
| Reference: | [6] Feireisl E.: Dynamics of Viscous Compressible Fluids.Oxford University Press, Oxford, 2003. Zbl 1080.76001, MR 2040667 | 
| Reference: | [7] Feireisl E., Novotný A., Petzeltová H.: On the existence of globally defined weak solutions to the Navier-Stokes equations of compressible isentropic fluids.J. Math. Fluid Dynamics 3 (2001), 358-392. MR 1867887 | 
| Reference: | [8] Frehse J., Goj S., Steinhauer M.: $L^p$-estimates for the Navier-Stokes equations for steady compressible flow.Manuscripta Math. 116 (2005), 3 265-275. Zbl 1072.35143, MR 2130943, 10.1007/s00229-004-0513-6 | 
| Reference: | [9] Hoff D.: Strong convergence to global solutions for multidimensional flows of compressible, viscous fluids with polytropic equations of state and discontinuous initial data.Arch. Rational Mech. Anal. 132 (1995), 1-14. Zbl 0836.76082, MR 1360077, 10.1007/BF00390346 | 
| Reference: | [10] Lions P.-L.: Compressible models.Mathematical Topics in Fluid Dynamics, vol. 2, Oxford Science Publication, Oxford, 1998. Zbl 0908.76004, MR 1637634 | 
| Reference: | [11] Nečas J.: Les Methodes Directes en théorie des Équations Elliptiques.Masson & CIE, Éditeurs, Paris, 1967. MR 0227584 | 
| Reference: | [12] Novo S., Novotný A.: On the existence of weak solutions to steady compressible Navier-Stokes equations when the density is not square integrable.J. Math. Kyoto Univ. 42 3 (2002), 531-550. MR 1967222 | 
| Reference: | [13] Novotný A.: Some remarks to the compactness of steady compressible isentropic Navier-Stokes equations via decomposition method.Comment. Math. Univ. Carolin. 37 2 (1996), 305-342. MR 1399004 | 
| Reference: | [14] Novotný A., Padula M.: Existence and uniqueness of stationary solutions for viscous compressible heat-conductive fluid with large potential and small nonpotential external forces.Siberian Math. J. 34 (1991), 120-146. MR 1255466 | 
| Reference: | [14] Novotný A., Padula M.: Existence and uniqueness of stationary solutions of equations of a compressible viscous heat-conductive fluid for large potential and small nonpotential external forces.Siberian Math. J. 34 (1993), 898-922. MR 1255466, 10.1007/BF00971405 | 
| Reference: | [15] Novotný A., Straškraba I.: Introduction to the Mathematical Theory of Compressible Flow.Oxford University Press, Oxford, 2004. MR 2084891 | 
| Reference: | [16] Plotnikov P.I., Sokolowski J.: Concentrations of stationary solutions to compressible Navier-Stokes equations.Comm. Math. Phys. 258 (2005), 3 567-608. MR 2172011, 10.1007/s00220-005-1358-x | 
| Reference: | [17] Plotnikov P.I., Sokolowski J.: Stationary solutions of Navier-Stokes equations for diatomic gases.Russian Math. Surveys 62 (2007), 3 561-593. Zbl 1139.76049, MR 2355421, 10.1070/RM2007v062n03ABEH004414 | 
| Reference: | [18] Serre D.: Variations de grande amplitude pour la densité d'un fluid visqueux compressible.Physica D 48 (1991), 113-128. MR 1098658, 10.1016/0167-2789(91)90055-E | 
| Reference: | [19] Tartar L.: Compensated compactness and applications to partial differential equations.in Nonlinear Analysis and Mechanics: Heriot-Watt Symposium, L.J. Knopps, Ed., Research Notes in Math., no. 39, Pitman, Boston, 1979, pp.138-211. Zbl 0437.35004, MR 0584398 | 
| . |