[2] Berkovits J., Mustonen V.: 
On topological degree for mappings of monotone type. Nonlinear Anal. TMA 10 (1986), 1373-1383. 
MR 0869546 
[7] Gossez J.-P.: 
Orlicz spaces and nonlinear elliptic boundary value problems. Nonlinear Analysis, Function Spaces and Applications, Teubner-Texte zur Mathematik. 1979, pp. 59-94. 
MR 0578910 
[10] Hess P.: 
On nonlinear mappings of monotone type with respect to two Banach spaces. J. Math. Pures Appl. 52 (1973), 13-26. 
MR 0636418 | 
Zbl 0222.47019 
[12] Kittilä A.: 
On the topological degree for a ciass of mappings of monotone type and applications to strongly nonlinear elliptic problems. Ann. Acad. Sci. Fenn. Ser. AI Math. Dissertationes 91 (1994). 
MR 1263099 
[13] Krasnoseľskii M., Rutickii J.: 
Convex functions and Orlicz spaces. P. Noordhoff Ltd., Groningen, 1961. 
MR 0126722 
[14] Kufner A., John O., Fučík S.: 
Function spaces. Academia, Praha, 1977. 
MR 0482102 
[16] Landes R., Mustonen V.: 
On pseudomonotone operators and nonlinear noncoercive variational problems on unbounded domains. Math. Ann. 248 (1980), 241-246. 
DOI 10.1007/BF01420527 | 
MR 0575940 
[17] Landes R., Mustonen V.: 
Pseudo-monotone mappings in Orlicz-Sobolev spaces and nonlinear boundary value problem on unbounded domains. J. Math. Anal. Appl. 88 (1982), 25-36. 
DOI 10.1016/0022-247X(82)90173-1 | 
MR 0661399 
[18] Leray J., Lions J. L.: 
Quelques résultats de Višik sur des problémes elliptiques non linéaires par les méthodes de Minty-Browder. Bul. Soc. Math. France 93 (1965), 97-107. 
DOI 10.24033/bsmf.1617 | 
MR 0194733 
[20] Tienari M.: 
A degree theory for a class of mappings of monotone type in Orlicz-Sobolev spaces. Ann. Acad. Sci. Fenn. Ser. AI Math. Dissertationes 97 (1994). 
MR 2714883 | 
Zbl 0821.47044