[1] Anderson, M., Feil, T.: 
Lattice-Ordered Groups (An Introduction). Dordrecht, Reidel, 1987. 
MR 0937703[3] Chajda, I., Halaš, R.: 
Indexed annihilators in ordered sets. Math. Slovaca 45 (1995), 501–508. 
MR 1390703[6] Erné, M.: 
Distributivgesetze und die Dedekindsche Schnittverwollständigung. Abh. Braunschweig. Wiss. Ges. 33 (1982), 117–145. 
MR 0693169[7] Grätzer, G.: 
Lattice Theory. Akademie Verlag, Berlin, 1978. 
MR 0504338[8] Halaš, R.: 
Pseudocomplemented ordered sets. Arch. Math. (Brno) 29 (1993), 153–160. 
MR 1263116[9] Halaš, R.: 
Characterization of distributive sets by generalized annihilators. Arch. Math. (Brno) 30 (1994), 25–27. 
MR 1282110[10] Halaš, R.: 
Decompositions of directed sets with zero. Math. Slovaca 45 (1995), 9–17. 
MR 1335835[11] Halaš, R.: 
Ideals and annihilators in ordered sets. Czechoslovak Math. J. 45(120) (1995), 127–134. 
MR 1314535[12] Halaš, R.: 
Some properties of Boolean ordered sets. Czechoslovak Math. J. 46(121) (1996), 93–98. 
MR 1371691[13] Halaš, R.: 
A characterization of finite Stone PC-ordered sets. Math. Bohem. 121 (1996), 117–120. 
MR 1400602[14] Halaš, R.: 
Annihilators and ideals in distributive and modular ordered sets. Acta Univ. Palack. Olomouc. Fac. Rerum Natur. Math. 34 (1995), 31–37. 
MR 1447252[15] Halaš, R., Rachůnek, J.: 
Polars and prime ideals in ordered sets. Discuss. Math., Algebra and Stochastic Methods 15 (1995), 43–59. 
MR 1369627[16] Jakubík, J.: 
$M$-polars in lattices. Čas. Pěst. Mat. 95 (1970), 252–255. 
MR 0274352[17] Katriňák, T.: 
$M$-Polaren in halbgeordneten Mengen. Čas. Pěst. Mat. 95 (1970), 416–419. 
MR 0279004[18] Larmerová, J., Rachůnek, J.: 
Translations of modular and distributive ordered sets. Acta Univ. Palack. Olomouc. Fac. Rerum Natur. Math. 27(91) (1988), 13–23. 
MR 1039879[19] Niederle, J.: 
Boolean and distributive ordered sets: Characterization and representation by sets (preprint).  
MR 1354802[20] Rachůnek, J.: 
A characterization of $o$-distributive semilattices. Acta Sci. Math. (Szeged) 54 (1990), 241–246. 
MR 1096803[21] Rachůnek, J.: On $o$-modular and $o$-distributive semilattices. Math. Slovaca 42 (1992), 3–13.
[22] Rachůnek, J.: 
The ordinal variety of distributive ordered sets of width two. Acta Univ. Palack. Olomouc. Fac. Rerum Natur. Math. 30(100) (1991), 17–32. 
MR 1166422[23] Rachůnek, J.: Non-modular and non-distributive ordered sets of lattices. Acta Univ. Palack. Olomouc. Fac. Rerum Natur. Math. 32(110) (1993), 141–149.
[24] Šik, F.: A characterization of polarities the lattice of polars of which is Boolean. Czechoslovak Math. J. 91(106) (1981), 98–102.