Previous |  Up |  Next


abelian lattice ordered group; disjoint subset; cut completion; Dedekind completion
We denote by $F_a$ the class of all abelian lattice ordered groups $H$ such that each disjoint subset of $H$ is finite. In this paper we prove that if $G \in F_a$, then the cut completion of $G$ coincides with the Dedekind completion of $G$.
[1] R. N. Ball: The structure of the $\alpha $-completion of a lattice ordered group. Houston J. Math. 15 (1989), 481–515. MR 1045509 | Zbl 0703.06009
[2] R. N. Ball: Completions of $\ell $-groups. In: Lattice Ordered Groups, A. M. W. Glass and W. C. Holland (eds.), Kluwer, Dordrecht-Boston-London, 1989, pp. 142–177. MR 1036072
[3] R. N. Ball: Distinguished extensions of a lattice ordered group. Algebra Universalis 35 (1996), 85–112. DOI 10.1007/BF01190971 | MR 1360533 | Zbl 0842.06012
[4] P. Conrad: The structure of lattice-ordered groups with a finite number of disjoint elements. Michigan Math. J. 7 (1960), 171–180. DOI 10.1307/mmj/1028998387 | MR 0116059
[5] P. Conrad: Lattice Ordered Groups. Tulane University, 1970. Zbl 0258.06011
[6] J. Jakubík: Generalized Dedekind completion of a lattice ordered group. Czechoslovak Math. J. 28 (1978), 294–311. MR 0552650
Partner of
EuDML logo