| Title:
             | 
On cut completions of abelian lattice ordered groups (English) | 
| Author:
             | 
Jakubík, Ján | 
| Language:
             | 
English | 
| Journal:
             | 
Czechoslovak Mathematical Journal | 
| ISSN:
             | 
0011-4642 (print) | 
| ISSN:
             | 
1572-9141 (online) | 
| Volume:
             | 
50 | 
| Issue:
             | 
3 | 
| Year:
             | 
2000 | 
| Pages:
             | 
587-602 | 
| Summary lang:
             | 
English | 
| . | 
| Category:
             | 
math | 
| . | 
| Summary:
             | 
We denote by $F_a$ the class of all abelian lattice ordered groups $H$ such that each disjoint subset of $H$ is finite. In this paper we prove that if $G \in F_a$, then the cut completion of $G$ coincides with the Dedekind completion of $G$. (English) | 
| Keyword:
             | 
abelian lattice ordered group | 
| Keyword:
             | 
disjoint subset | 
| Keyword:
             | 
cut completion | 
| Keyword:
             | 
Dedekind completion | 
| MSC:
             | 
06F15 | 
| MSC:
             | 
06F20 | 
| idZBL:
             | 
Zbl 1079.06507 | 
| idMR:
             | 
MR1777479 | 
| . | 
| Date available:
             | 
2009-09-24T10:36:01Z | 
| Last updated:
             | 
2020-07-03 | 
| Stable URL:
             | 
http://hdl.handle.net/10338.dmlcz/127595 | 
| . | 
| Reference:
             | 
[1] R. N. Ball: The structure of the $\alpha $-completion of a lattice ordered group.Houston J. Math. 15 (1989), 481–515. Zbl 0703.06009, MR 1045509 | 
| Reference:
             | 
[2] R. N. Ball: Completions of $\ell $-groups.In: Lattice Ordered Groups, A. M. W. Glass and W. C. Holland (eds.), Kluwer, Dordrecht-Boston-London, 1989, pp. 142–177. MR 1036072 | 
| Reference:
             | 
[3] R. N. Ball: Distinguished extensions of a lattice ordered group.Algebra Universalis 35 (1996), 85–112. Zbl 0842.06012, MR 1360533, 10.1007/BF01190971 | 
| Reference:
             | 
[4] P. Conrad: The structure of lattice-ordered groups with a finite number of disjoint elements.Michigan Math. J. 7 (1960), 171–180. MR 0116059, 10.1307/mmj/1028998387 | 
| Reference:
             | 
[5] P. Conrad: Lattice Ordered Groups.Tulane University, 1970. Zbl 0258.06011 | 
| Reference:
             | 
[6] J. Jakubík: Generalized Dedekind completion of a lattice ordered group.Czechoslovak Math. J. 28 (1978), 294–311. MR 0552650 | 
| . |