Previous |  Up |  Next

Article

Title: Modular functions on multilattices (English)
Author: Avallone, Anna
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 52
Issue: 3
Year: 2002
Pages: 499-512
Summary lang: English
.
Category: math
.
Summary: We prove that every modular function on a multilattice $L$ with values in a topological Abelian group generates a uniformity on $L$ which makes the multilattice operations uniformly continuous with respect to the exponential uniformity on the power set of $L$. (English)
Keyword: multilattices
Keyword: modular functions
MSC: 06B99
MSC: 28B10
idZBL: Zbl 1011.28008
idMR: MR1923256
.
Date available: 2009-09-24T10:53:30Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127738
.
Reference: [1] A. Avallone: Liapunov theorem for modular functions.Internat. J.  Theoret. Phys. 34 (1995), 1197–1204. Zbl 0841.28007, MR 1353662, 10.1007/BF00676229
Reference: [2] A. Avallone: Nonatomic vector-valued modular functions.Annal. Soc. Math. Polon. Series I: Comment. Math. XXXIX (1999), 37–50. Zbl 0987.28012, MR 1739014
Reference: [3] A.  Avallone, G. Barbieri and R. Cilia: Control and separating points of modular functions.Math. Slovaca 43 (1999), . MR 1696950
Reference: [4] A.  Avallone and A.  De  Simone: Extensions of modular functions on orthomodular lattices.Italian J. Pure Appl. Math, To appear. MR 1842373
Reference: [5] A.  Avallone and M. A. Lepellere: Modular functions: Uniform boundedness and compactness.Rend. Circ. Mat. Palermo XLVII (1998), 221–264. MR 1633479
Reference: [6] A.  Avallone and J. Hamhalter: Extension theorems (vector measures on quantum logics).Czechoslovak Math. J.  46 (121) (1996), 179–192. MR 1371699
Reference: [7] A.  Avallone and H. Weber: Lattice uniformities generated by filters.J.  Math. Anal. Appl. 209 (1997), 507–528. MR 1474622, 10.1006/jmaa.1996.5291
Reference: [8] G. Barbieri and H.  Weber: A topological approach to the study of fuzzy measures.Funct. Anal. Econom. Theory, Springer, 1998, pp. 17–46. MR 1730117
Reference: [9] G. Barbieri, M. A. Lepellere and H. Weber: The Hahn decomposition theorem and applications.Fuzzy Sets Systems 118 (2001), 519–528. MR 1809398
Reference: [10] H. J. Bandelt, M.  Van  de  Vel and E.  Verheul: Modular interval spaces.Math. Nachr. 163 (1993), 177–201. MR 1235066, 10.1002/mana.19931630117
Reference: [11] M. Benado: Les ensembles partiellement ordonnes et le theoreme de raffinement de Schrelier II.Czechoslovak Math.  J. 5 (1955), 308–344. MR 0076744
Reference: [12] G. Birkhoff: Lattice Theory, Third edition.AMS Providence, R.I., 1967. MR 0227053
Reference: [13] I. Fleischer and T.  Traynor: Equivalence of group-valued measure on an abstract lattice.Bull. Acad. Pol. Sci. 28 (1980), 549–556. MR 0628641
Reference: [14] I. Fleischer and T.  Traynor: Group-valued modular functions.Algebra Universalis 14 (1982), 287–291. MR 0654397, 10.1007/BF02483932
Reference: [15] M. G. Graziano: Uniformities of Fréchet-Nikodým type on Vitali spaces.Semigroup Forum 61 (2000), 91–115. Zbl 0966.28008, MR 1839217, 10.1007/PL00006017
Reference: [16] D. J. Hensen: An axiomatic characterization of multilattices.Discrete Math. 33 (1981), 99–101. MR 0597233, 10.1016/0012-365X(81)90263-6
Reference: [17] J. Jakubík: Sur les axiomes des multistructures.Czechoslovak Math.  J. 6 (1956), 426–430. MR 0099933
Reference: [18] J. Jakubík and M.  Kolibiar: Isometries of multilattice groups.Czechoslovak Math.  J. 33 (1983), 602–612. MR 0721089
Reference: [19] J. Lihová: Valuations and distance function on directed multilattices.Math. Slovaca 46 (1996), 143–155. MR 1426999
Reference: [20] J.  Lihová and K. Repasky: Congruence relations on and varieties of directed multilattices.Math. Slovaca 38 (1988), 105–122. MR 0945364
Reference: [21] T. Traynor: Modular functions and their Fréchet-Nikodým topologies.Lectures Notes in  Math. 1089 (1984), 171–180. Zbl 0576.28014, MR 0786696, 10.1007/BFb0072613
Reference: [22] H. Weber: Uniform Lattices I: A generalization of topological Riesz space and topological Boolean rings; Uniform lattices II.Ann. Mat. Pura Appl. 160 (1991), 347–370. MR 1163215, 10.1007/BF01764134
Reference: [23] H. Weber: Lattice uniformities and modular functions on orthomodular lattices.Order 12 (1995), 295–305. Zbl 0834.06013, MR 1361614, 10.1007/BF01111744
Reference: [24] H. Weber: On modular functions.Funct. Approx. XXIV (1996), 35–52. Zbl 0887.06011, MR 1453447
Reference: [25] H. Weber: Valuations on complemented lattices.Internat. J.  Theoret. Phys. 34 (1995), 1799–1806. Zbl 0843.06005, MR 1353726, 10.1007/BF00676294
Reference: [26] H. Weber: Complemented uniform lattices.Topology Appl. 105 (2000), 47–64. Zbl 1121.54312, MR 1761086, 10.1016/S0166-8641(99)00049-8
Reference: [27] H. Weber: Two extension theorems. Modular functions on complemented lattices.Preprint. Zbl 0998.06006, MR 1885457
.

Files

Files Size Format View
CzechMathJ_52-2002-3_5.pdf 366.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo