Previous |  Up |  Next


Borel maps; $\sigma $-compact sections; set-valued maps
The paper is concerned with a recent very interesting theorem obtained by Holický and Zelený. We provide an alternative proof avoiding games used by Holický and Zelený and give some generalizations to the case of set-valued mappings.
[1] J. Chaber and R. Pol: Remarks on closed relations and a theorem of Hurewicz. Topology Proc. 22 (1997), 81–94. MR 1657906
[2] C. Dellacherie: Un cours sur les ensembles analytiques. In: Analytic Sets, C. A. Rogers et al. (eds.), Academic Press, London, 1980, pp. 183–316.
[3] R. Engelking: General Topology. PWN, Warszawa, 1977. MR 0500780 | Zbl 0373.54002
[4] J. Hoffman-Jørgensen and F. Topsøe: Analytic spaces and their Application. In: Analytic Sets, C. A. Rogers et al. (eds.), Academic Press, London, 1980, pp. 317–401.
[5] P. Holický and M. Zelený: A converse of Arsenin-Kunugui theorem on Borel sets with $\sigma $-compact sections. Fund. Math. 165 (2000), 191–202. MR 1805424
[6] A. S. Kechris: Classical Descriptive Set Theory. Springer-Verlag, New York, 1994. MR 1321597
[7] A. S. Kechris, A. Louveau and W. H. Woodin: The structure of $\sigma $-ideals of compact sets. Trans. Amer. Math. Soc. 301 (1987), 263–288. MR 0879573
[8] K. Kuratowski: Topology  I and II. Academic Press, Warszawa, 1966 and 1968. MR 0217751
[9] H. Michalewski and R. Pol: On a Hurewicz-type theorem and a selection theorem of Michael. Bull. Polish Acad. Sci. Math. 43 (1995), 273–275. MR 1414783
[10] R. Pol: Some remarks about measurable parametrizations. Proc. Amer. Math. Soc. 93 (1985), 628–632. DOI 10.1090/S0002-9939-1985-0776192-3 | MR 0776192 | Zbl 0609.28006
Partner of
EuDML logo