[2] S.  Burris and H. P.  Sankappanavar: 
A Course in Universal Algebra. Springer-Verlag, New York, 1981. 
MR 0648287 
[3] J.  Czelakowski and W.  Dziobiak: 
The parametrized local deduction theorem for quasivarieties of algebras and its applications. Algebra Universalis 35 (1996), 713–419. 
DOI 10.1007/BF01197181 | 
MR 1387912 
[5] R.  Cignoli, I. M. L.  D’Ottaviano and D.  Mundici: Algebras of Łukasiewicz Logics, Second Edition. Editions CLE. State University of Campinas, Campinas, S. P. Brazil, 1995.
[8] M.  Font, A. J.  Rogriguez and A.  Torrens: 
Wajsberg algebras. Stochastica  (1984), 5–31. 
MR 0780136 
[10] H.  Gaitán: 
Quasivarieties of Wajsberg algebras. J. Non-Classical Logic 8 (1991), 79–101. 
MR 1209377 
[11] H.  Gaitán: 
The number simple of bounded commoutative BCK-chains with one generator. Math. Japon. 38 (1993), 483–486. 
MR 1221017 
[12] D.  Mundici: A Short Introduction to the Algebras of Many-Valued Logic. Monograph.
[13] D.  Mundici: 
MV-algebras are categorically equivalent to bounded commutative BCK-algebras. Math. Japon. 31 (1986), 889–894. 
MR 0870978 | 
Zbl 0633.03066 
[14] A.  Romanowska: 
Commutative BCK-chains with one generator. Math. Japon. 30 (1985), 663–670. 
MR 0812017 | 
Zbl 0583.03051 
[15] A.  Romanowska and T.  Traczyk: 
On the structure of commutative BCK-chains. Math. Japon. 26 (1981), 433–442. 
MR 0634919 
[16] A.  Romanowska and T.  Traczyk: 
Commutative BCK-algebras. Subdirectly irreducible algebras and varieties. Math. Japon. 27 (1982), 35–48. 
MR 0649018 
[17] T.  Traczyk: 
Free bounded commutative BCK-algebras with one free generator. Demonstratio Mathemetica XVI (1983), 1049–1056. 
MR 0744781