| Title: | On domination number of 4-regular graphs (English) | 
| Author: | Liu, Hailong | 
| Author: | Sun, Liang | 
| Language: | English | 
| Journal: | Czechoslovak Mathematical Journal | 
| ISSN: | 0011-4642 (print) | 
| ISSN: | 1572-9141 (online) | 
| Volume: | 54 | 
| Issue: | 4 | 
| Year: | 2004 | 
| Pages: | 889-898 | 
| Summary lang: | English | 
| . | 
| Category: | math | 
| . | 
| Summary: | Let $G$ be a simple graph. A subset $S \subseteq V$ is a dominating set of $G$, if for any vertex $v \in V~- S$ there exists a vertex $u \in S$ such that $uv \in E (G)$. The domination number, denoted by $\gamma (G)$, is the minimum cardinality of a dominating set. In this paper we prove that if $G$ is a 4-regular graph with order $n$, then $\gamma (G) \le \frac{4}{11}n$. (English) | 
| Keyword: | regular graph | 
| Keyword: | dominating set | 
| Keyword: | domination number | 
| MSC: | 05C69 | 
| idZBL: | Zbl 1080.05524 | 
| idMR: | MR2100002 | 
| . | 
| Date available: | 2009-09-24T11:18:39Z | 
| Last updated: | 2020-07-03 | 
| Stable URL: | http://hdl.handle.net/10338.dmlcz/127938 | 
| . | 
| Reference: | [1] T. W. Haynes, S. T. Hedetniemi and P. J. Slater: Fundamentals of Domination in Graphs.Marcel Dekker, 1998. MR 1605684 | 
| Reference: | [2] W. McGuaig and B. Shepherd: Domination in graphs with minimum degree two.J. Graph Theory 13 (1989), 749–762. MR 1025896 | 
| Reference: | [3] O. Ore: Theory of Graphs.Amer. Math. Soc. Colloq. Publ. (AMS, Providence, RI) 38 (1962). Zbl 0105.35401, MR 0150753 | 
| Reference: | [4] B. Reed: Paths, stars, and the number three.Comb. Prob. Comp. 5 (1996), 277–295. Zbl 0857.05052, MR 1411088, 10.1017/S0963548300002042 | 
| . |