Article
Keywords:
primes in arithmetic progressions; squarefree integers; Artin’s constant
Summary:
In this paper we establish the distribution of prime numbers in a given arithmetic progression $p \equiv l \hspace{4.44443pt}(\@mod \; k)$ for which $ap + b$ is squarefree.
References:
                        
[1] Tom M. Apostol: 
Introduction to Analytic Number Theory. Springer-Verlag, 1976. 
MR 0434929[2] William  Ellison and Fern Ellison: 
Prime Numbers. John Wiley & Sons, 1985. 
MR 0814687[3] Ronald L. Graham, Donald E.  Knuth and Oren Patashnik: 
Concrete Mathematics: A Foundation for Computer Science. Addison-Wesley, second edition, 1994. 
MR 1397498[4] G. H. Hardy and E. M. Wright: An Introduction to the Theory of Numbers. Oxford at the Clarendon Press, fourth edition, 1960.
[5] Edmund Landau and Paul T.  Bateman: Handbuch der Lehre von der Verteilung der Primzahlen. Chelsea, New York, second edition, 1974.
[6] N. S. Mendelsohn: Private communication to Jacek Fabrykowski. 1989.
[8] Karl Prachar: 
Über die kleinste quadratfrei Zahl einer arithmetischen Reihe. Monatsh. Math. 3 (1958), 173–176. 
MR 0092806[9] John W. Wrench, Jr.: 
Evaluation of Artin’s constant and the twin-prime constant. Math. Comp. 15 (1961), 396–398. 
MR 0124305