Article
Keywords:
oscillatory; second order differential equations
Summary:
We give a sufficient condition for the oscillation of linear homogeneous second order differential equation $y^{\prime \prime }+p(x)y^{\prime }+q(x)y=0$, where $p(x), q(x)\in C[\alpha ,\infty )$ and $\alpha $ is positive real number.
References:
                        
[3] H.  Erbe, Qinghai Kong and Shigui Ruan: 
Kamenev type theorems for 2nd order matrix differential systems. Proc. Amer. Math. Soc. 117 (1993), 957–962. 
MR 1154244[5] I.  Kamenev: 
Integral criterion for oscillation of linear differential equations of second order. Zametki 23 (1978), 136-138. 
MR 0486798 | 
Zbl 0408.34031[7] A. B. Mingarelli: 
On a conjecture for oscillation of second order ordinary differential systems. Proc. Amer. Math. Soc. 82 (1981), 592–598. 
MR 0614884 | 
Zbl 0487.34030[9] D.  Willett: 
On the oscillatory behavior of the solution of second order linear differential equations. Ann. Polon. Math. 21 (1969), 175–194. 
DOI 10.4064/ap-21-2-175-194 | 
MR 0249723