Article
Keywords:
bounded lattice; lattice ordered group; generalized cardinal property; homogeneity
Summary:
We denote by  $K$ the class of all cardinals; put $K^{\prime }= K \cup \lbrace \infty \rbrace $. Let $\mathcal C$  be a class of algebraic systems. A generalized cardinal property  $f$ on  $\mathcal C$ is defined to be a rule which assings to each $A \in \mathcal C$ an element  $f A$ of  $K^{\prime }$ such that, whenever $A_1, A_2 \in \mathcal C$ and $A_1 \simeq A_2$, then $f A_1 =f A_2$. In this paper we are interested mainly in the cases when (i)  $\mathcal C$  is the class of all bounded lattices  $B$ having more than one element, or  (ii)  $\mathcal C$  is a class of lattice ordered groups.
References:
                        
[2] P.  Conrad: 
Lattice Ordered Groups. Tulane University, 1970. 
Zbl 0258.06011[3] E. K.  van Douwen: Cardinal functions on compact $F$-spaces and weakly complete Boolean algebras. Fundamenta Math. 113 (1982), 235–256.
[4] E. K.  van Douwen: 
Cardinal functions on Boolean spaces. In: Handbook of Boolean Algebras, J. D.  Monk and R.  Bonnet (eds.), North Holland, Amsterdam, 1989, pp. 417–467. 
MR 0991599[5] J.  Jakubík: 
Konvexe Ketten in $\ell $-Gruppen. Časopis pěst. mat. 84 (1959), 53–63. 
MR 0104740[8] J. D.  Monk: 
Cardinal functions on Boolean algebras. In: Orders, Description and Roles, M. Pouzet and D. Richard (eds.), North Holland, Amsterdam, 1984, pp. 9–37. 
MR 0779843 | 
Zbl 0557.06009[9] R. S.  Pierce: 
Some questions about complete Boolean algebras. Proc. Symp. Pure Math., Vol.  II, Lattice Theory, Amer. Math. Soc., Providence, 1961. 
MR 0138570 | 
Zbl 0101.27104[10] F.  Šik: 
Über subdirekte Summen geordneter Gruppen. Czechoslovak Math.  J. 10 (1960), 400–424. 
MR 0123626