Article
Keywords:
central quasigroups; $T$-quasigroups; multiplication groups; Frobenius groups; quasigroups isotopic to Abelian groups
Summary:
If $Q$  is a quasigroup that is free in the class of all quasigroups which are isotopic to an Abelian group, then its multiplication group  $\mathop {\mathrm Mlt}Q$ is a Frobenius group. Conversely, if $\mathop {\mathrm Mlt}Q$  is a Frobenius group, $Q$ a quasigroup, then  $Q$  has to be isotopic to an Abelian group. If $Q$  is, in addition, finite, then it must be a central quasigroup (a $T$-quasigroup).
References:
                        
[2] V. D. Belousov: 
Balanced identities in quasigroups. Matem. sbornik (N.S.) 70 (1966), 55–97. (Russian) 
MR 0202898 | 
Zbl 0199.05203[3] V. D.  Belousov: 
Osnovy teorii kvazigrupp i lup. Nauka, Moskva, 1967. 
MR 0218483[4] G. B.  Belyavskaya: 
$T$-quasigroups and the centre of a quasigroup. Matem. Issled. 111 (1989), 24–43. (Russian) 
MR 1045383[5] G. B.  Belyavskaya: 
Abelian quasigroups and $T$-quasigroups. Quasigroups and related systems 1 (1994), 1–7. 
MR 1327941[6] R. H.  Bruck: 
A Survey of Binary Systems. Springer-Verlag, 1971. 
MR 0093552[7] O.  Chein, H. O.  Pflugfelder and J. D. H.  Smith: 
Quasigroups and Loops: Theory and Applications. Heldermann, Berlin, 1990. 
MR 1125806[8] A.  Drápal: 
Multiplication groups of free loops  I. Czechoslovak Math.  J. 46 (1996), 121–131. 
MR 1371694[9] A.  Drápal: 
Multiplication groups of free loops  II. Czechoslovak Math.  J. 46 (1996), 201–220. 
MR 1388610[12] G.  Grätzer: 
Universal Algebra. Van Nostrand, Princeton, 1968. 
MR 0248066[13] J.  Ježek and T.  Kepka: 
Quasigroups isotopic to a group. Comment. Math. Univ. Carolin. 16 (1975), 59–76. 
MR 0367103[14] J.  Ježek: 
Normal subsets of quasigroups. Comment. Math. Univ. Carolin. 16 (1975), 77–85. 
MR 0367104[15] J.  Ježek: 
Univerzální algebra a teorie modelů. SNTL, Praha, 1976. 
MR 0546057[16] T.  Kepka and P.  Němec: 
$T$-quasigroups  I. Acta Univ. Carolin. Math. Phys. 12 (1971), 39–49. 
MR 0320206[17] T.  Kepka and P.  Němec: 
$T$-quasigroups  II. Acta Univ. Carolin. Math. Phys. 12 (1971), 31–49. 
MR 0654381