Article
Keywords:
limit set of a set; attractor; quasi-attractor; hyperspace
Summary:
In this paper, we discuss the properties of limit sets of subsets and attractors in a compact metric space. It is shown that the $\omega $-limit set  $\omega (Y)$ of  $Y$ is the limit point of the sequence $\lbrace (\mathop {\mathrm Cl}Y)\cdot [i,\infty )\rbrace _{i=1}^{\infty }$ in  $2^X$ and also a quasi-attractor is the limit point of attractors with respect to the Hausdorff metric. It is shown that if a component of an attractor is not an attractor, then it must be a real quasi-attractor.
References:
                        
[1] N. P. Bhatia and G. P. Szegö: 
Stability Theory of Dynamical Systems. Springer-Verlag, Berlin, 1970. 
MR 0289890[4] C. C. Conley: 
Isolated invariant sets and Morse index. Conf. Board Math. Sci., No  38, Amer. Math. Sci., Providence, 1978. 
MR 0511133[6] J. K. Hale and P. Waltmann: 
Persistence in infinite-dimensional systems. SIAM J.  Math. Anal. 20 (1989), 388–395. 
DOI 10.1137/0520025 | 
MR 0982666[7] R. Moeckel: 
Some comments on “The gradient structure of a flow: I”. vol. $8^*$, Ergod. Th. & Dynam. Sys., 1988. 
MR 0967626[8] S. B. Nadler, Jr.: 
Continuum Theory: An Introduction. Marcel Dekker, New York-Basel-Hong Kong, 1992. 
MR 1192552 | 
Zbl 0757.54009[9] T. Huang: Some global properties in dynamical systems. PhD. thesis, Inst. of Math., Academia Sinica, , 1998.