| Title: | 4-dimensional anti-Kähler manifolds and Weyl curvature (English) | 
| Author: | Kim, Jaeman | 
| Language: | English | 
| Journal: | Czechoslovak Mathematical Journal | 
| ISSN: | 0011-4642 (print) | 
| ISSN: | 1572-9141 (online) | 
| Volume: | 56 | 
| Issue: | 1 | 
| Year: | 2006 | 
| Pages: | 267-271 | 
| Summary lang: | English | 
| . | 
| Category: | math | 
| . | 
| Summary: | On a 4-dimensional anti-Kähler manifold, its zero scalar curvature implies that its Weyl curvature vanishes and vice versa. In particular any 4-dimensional anti-Kähler manifold with zero scalar curvature is flat. (English) | 
| Keyword: | 4-dimensional anti-Kähler manifold | 
| Keyword: | zero scalar curvature | 
| Keyword: | Weyl curvature | 
| Keyword: | flat | 
| MSC: | 32J27 | 
| MSC: | 53B30 | 
| MSC: | 53C25 | 
| MSC: | 53C55 | 
| MSC: | 53C56 | 
| MSC: | 53C80 | 
| idZBL: | Zbl 1157.53316 | 
| idMR: | MR2207017 | 
| . | 
| Date available: | 2009-09-24T11:32:51Z | 
| Last updated: | 2020-07-03 | 
| Stable URL: | http://hdl.handle.net/10338.dmlcz/128064 | 
| . | 
| Reference: | [1] Arthur L. Besse: Einstein manifolds.Springer Verlag, 1987. MR 0867684 | 
| Reference: | [2] Andrzej Borowiec, Mauro Francaviglia and Igor Volvovich: Anti-Kählerian Manifolds.Differential Geometry and its Applications 12 (2000), 281–289. MR 1764334 | 
| . |