Article
Keywords:
partial algebras; varieties; weak subalgebras; weak equations
Summary:
We study the weak hereditary class  $S_{w}(\mathcal K)$ of all weak subalgebras of algebras in a total variety  $\mathcal K$. We establish an algebraic characterization, in the sense of Birkhoff’s HSP  theorem, and a syntactical characterization of these classes. We also consider the problem of when such a weak hereditary class is weak equational.
References:
                        
[1] H. Andréka, I.  Németi: 
Generalization of the concept of variety and quasivariety to partial algebras through category theory. Dissertationes Math. (Rozpr. Matem.) 204, (1983). 
MR 0709027 
[2] P. Burmeister: 
A Model Theoretic Approach to Partial Algebras. Math. Research  32. Akademie-Verlag, Berlin, 1986. 
MR 0854861 
[3] G. Grätzer, E. T.  Schmidt: 
Characterizations of congruence lattices of abstract algebras. Acta Sci. Math. (Szeged) 24 (1963), 34–59. 
MR 0151406 
[4] D. Jakubíková-Studenovská: 
On completions of partial monounary algebras. Czechoslovak Math.  J. 38 (1988), 256–268. 
MR 0946294 
[5] M.  Llabrés, F.  Rosselló: 
Pushout complements for arbitrary partial algebras. In: Proc. 6th International Workshop on Theory and Application of Graph Transformation TAGT’98. Lect. Notes in Comp. Sc.  1764, 2000, pp. 131–144. 
MR 1794795 
[8] R. Szymański: 
Decidability of weak equational theories. Czechoslovak Math. J. 46 (1996), 629–664. 
MR 1414600