Previous |  Up |  Next


lattice ordered group; generalized Boolean algebra; extension; vector lattice; subdirect decomposition; value; radical
The extension of a lattice ordered group $A$ by a generalized Boolean algebra $B$ will be denoted by $A_B$. In this paper we apply subdirect decompositions of $A_B$ for dealing with a question proposed by Conrad and Darnel. Further, in the case when $A$ is linearly ordered we investigate (i) the completely subdirect decompositions of $A_B$ and those of $B$, and (ii) the values of elements of $A_B$ and the radical $R(A_B)$.
[1] G. Birkhoff: Lattice Theory. Third Edition, Providence, 1967. MR 0227053 | Zbl 0153.02501
[2] P. Conrad: Lattice Ordered Groups. Tulane University, 1970. Zbl 0258.06011
[3] P. Conrad and M. R. Darnel: Generalized Boolean algebras in lattice ordered groups. Order 14 (1998), 295–319. MR 1644504
[4] P. Conrad and M. R. Darnel: Subgroups and hulls of Specker lattice-ordered groups. Czechoslovak Math. J 51 (2001), 395–413. DOI 10.1023/A:1013759300701 | MR 1844319
[5] C. Goffman: Remarks on lattice ordered groups and vector lattices. I. Carathéodory functions. Trans. Amer. Math. Soc. 88 (1958), 107–120. MR 0097331 | Zbl 0088.02602
[6] J. Jakubík: Cardinal properties of lattice ordered groups. Fundamenta Math. 74 (1972), 85–98. DOI 10.4064/fm-74-2-85-98 | MR 0302528
[7] J. Jakubík: Torsion classes of Specker lattice ordered groups. Czechoslovak Math. J. 52 (2002), 469–482. DOI 10.1023/A:1021711326115 | MR 1923254
[8] J. Jakubík: On vector lattices of elementary Carathéodory functions. Czechoslovak Math. J 55 (2005), 223-236. DOI 10.1007/s10587-005-0017-x | MR 2121669
[9] J. Jakubík: Torsion classes and subdirect products of Carathéodory vector lattices. Math. Slovaca 56 (2006), 79–92. MR 2217581
[10] J. Jakubík: Generalized Boolean algebra extensions of lattice ordered groups. Tatra Mt. Math. Publ. 30 (2005), 1–19. MR 2190244
[11] F. Šik: Über subdirekte Summen geordneter Gruppen. Czechoslovak Math. J. 10 (1960), 400–424. MR 0123626
Partner of
EuDML logo