[2] E. Balder, C. Hess: 
Two generalizations of Komlós theorem with lower closure-type applications. J.  Convex Anal. 3 (1996), 25–44. 
MR 1422749[3] E.  Balder, A. R.  Sambucini: 
On weak compactness and lower closure results for Pettis integrable (multi)functions. Bull. Pol. Acad. Sci. Math. 52 (2004), 53–61. 
DOI 10.4064/ba52-1-6 | 
MR 2070028[4] C.  Castaing: 
Weak compactness and convergences in Bochner and Pettis integration. Vietnam J.  Math. 24 (1996), 241–286. 
MR 2010821[5] C.  Castaing, P.  Clauzure: 
Compacité faible dans l’espace  $L^1_E$ et dans l’espace des multifonctions intégrablement bornées, et minimisation. Ann. Mat. Pura Appl. 140 (1985), 345–364. 
DOI 10.1007/BF01776856 | 
MR 0807644[6] C.  Castaing, M.  Valadier: 
Convex Analysis and Measurable Multifunctions. Lect. Notes Math. Vol.  580, Springer-Verlag, Berlin, 1977. 
DOI 10.1007/BFb0087688 | 
MR 0467310[7] T. S.  Chew, F. Flordeliza: 
On $x^{\prime }=f(t,x)$ and Henstock-Kurzweil integrals. Differential Integral Equations 4 (1991), 861–868. 
MR 1108065[10] M.  Federson, R.  Bianconi: 
Linear integral equations of Volterra concerning Henstock integrals. Real Anal. Exchange 25 (1999/00), 389–417. 
MR 1758896[11] M.  Federson, P.  Táboas: 
Impulsive retarded differential equations in Banach spaces via Bochner-Lebesgue and Henstock integrals. Nonlinear Anal. Ser.  A: Theory Methods 50 (2002), 389–407. 
MR 1906469[12] J. L.  Gamez, J.  Mendoza: 
On Denjoy-Dunford and Denjoy-Pettis integrals. Studia Math. 130 (1998), 115–133. 
MR 1623348[16] C.  Hess, H.  Ziat: 
Théorème de Komlós pour des multifonctions intégrables au sens de Pettis et applications. Ann. Sci. Math. Québec 26 (2002), 181–198. 
MR 1980843[18] K.  Musial: 
Topics in the theory of Pettis integration. In: School of Measure theory and Real Analysis, Grado, Italy, May  1992. Rend. Ist. Mat. Univ. Trieste 23 (1991), 177–262. 
MR 1248654[20] S.  Schwabik: 
The Perron integral in ordinary differential equations. Differential Integral Equations 6 (1993), 863–882. 
MR 1222306 | 
Zbl 0784.34006