| Title: | The boundedness of multilinear commutators of singular integrals on Lebesgue spaces with variable exponent (English) | 
| Author: | Xu, Jing-shi | 
| Language: | English | 
| Journal: | Czechoslovak Mathematical Journal | 
| ISSN: | 0011-4642 (print) | 
| ISSN: | 1572-9141 (online) | 
| Volume: | 57 | 
| Issue: | 1 | 
| Year: | 2007 | 
| Pages: | 13-27 | 
| Summary lang: | English | 
| . | 
| Category: | math | 
| . | 
| Summary: | The boundednees of multilinear commutators of Calderón-Zygmund singular integrals on Lebesgue spaces with variable exponent is obtained. The multilinear commutators of generalized Hardy-Littlewood maximal operator are also considered. (English) | 
| Keyword: | commutator | 
| Keyword: | Calderón-Zygmund singular integral | 
| Keyword: | BMO | 
| Keyword: | Lebesgue space with variable exponent | 
| Keyword: | maximal function | 
| MSC: | 42B20 | 
| MSC: | 46E30 | 
| idZBL: | Zbl 1174.42312 | 
| idMR: | MR2309945 | 
| . | 
| Date available: | 2009-09-24T11:43:24Z | 
| Last updated: | 2020-07-03 | 
| Stable URL: | http://hdl.handle.net/10338.dmlcz/128151 | 
| . | 
| Reference: | [1] R. Coifman, R. Rochberg and G. Weiss: Factorization theorems for Hardy spaces in several variables.Ann. of Math. 123 (1976), 611–635. MR 0412721 | 
| Reference: | [2] D. Cruz-Uribe, A. Fiorenza and C. Neugebauer: The maximal function on variable $L^p$  spaces.Ann. Acad. Sci. Fenn. Math. 28 (2003), 223–238. MR 1976842 | 
| Reference: | [3] L. Diening: Maximal function on generalized Lebesgue spaces $L^{p(\cdot )}$.Math. Inequal. Appl. 7 (2004), 245–253. MR 2057643 | 
| Reference: | [4] L. Diening and M. Růžička: Calderón-Zygmund operators on generalized Lebesgue spaces $L^{p(\cdot )}$ and problems related to fluid dynamics.J. Reine Angew. Math. 563 (2003), 197–220. MR 2009242 | 
| Reference: | [5] J. Garcia-Cuerva, E. Harboure, C. Segovia and J. Torrea: Weighted norm inequalities for commutators of strongly singular integrals.Indiana Univ. Math. J. 40 (1991), 1397–1420. MR 1142721, 10.1512/iumj.1991.40.40063 | 
| Reference: | [6] S. Janson: Mean oscillation and commutators of singular integral operators.Ark. Mat. 16 (1978), 263–270. Zbl 0404.42013, MR 0524754, 10.1007/BF02386000 | 
| Reference: | [7] A. Karlovich and A. Lerner: Commutators of singular integrals on generalized $L^p$ spaces with variable exponent.Publ. Nat. 49 (2005), 111–125. MR 2140202 | 
| Reference: | [8] V. Kokilashvili and S. Samko: Maximal and fractional operators in weighted $L^{p(x)}$ spaces.Revista Mat. Iberoam. 20 (2004), 493–515. MR 2073129 | 
| Reference: | [9] O. Kovacik and J. Rákosník: On spaces $L^{p(x)}$ and $W^{k,p(x)}$.Czech. Math. J. 41 (1991), 592–618. MR 1134951 | 
| Reference: | [10] A. Lerner: Weighted norm inequalities for the local sharp maximal function.J. Fourier Anal. Appl. 10 (2004), 465–474. Zbl 1098.42013, MR 2093912 | 
| Reference: | [11] B. Muckenhoupt: Weighted norm inequalities for the Hardy maximal function.Trans. Amer. Math. Soc. 165 (1972), 207–226. Zbl 0236.26016, MR 0293384, 10.1090/S0002-9947-1972-0293384-6 | 
| Reference: | [12] J. Musielak: Orlicz spaces and Modular spaces.Lecture Notes in Mathematics, 1034, Springer-Verlag, Berlin, 1983. Zbl 0557.46020, MR 0724434 | 
| Reference: | [13] A. Nekvinda: Hardy-Littlewood maximal operator on $L^{p(x)}(\mathbb{R}^n)$.Math. Inequal. Appl. 7 (2004), 255–265. MR 2057644 | 
| Reference: | [14] C. Perez: Endpoint estimates for commutators of singular integral operators.J. Funct. Anal. 128 (1995), 163–185. Zbl 0831.42010, MR 1317714, 10.1006/jfan.1995.1027 | 
| Reference: | [15] C. Perez and R. Trujillo-Gonzalez: Sharp weighted estimates for multilinear commutators.J. London Math. Soc. 65 (2002), 672–692. MR 1895740, 10.1112/S0024610702003174 | 
| Reference: | [16] L. Pick and M. Růžička: An example of a space $L^{p(x)}$ on which the Hardy-Littlewood maximal operator is not bounded.Expo. Math. 19 (2001), 369–371. MR 1876258, 10.1016/S0723-0869(01)80023-2 | 
| Reference: | [17] M. Růžička: Electrorheological Fluids: Modeling and Mathematical Theory.Lecture Notes in Mathematics, 1748, Springer-Verlag, Berlin, 2000. MR 1810360 | 
| Reference: | [18] E. Stein: Harmonic Analysis: Real-Variable Methods, Orthogonality and Oscillatory Integral.Princeton University Press. Princeton, NJ, 1993. MR 1232192 | 
| . |