| Title: | Decomposing complete tripartite graphs into closed trails of arbitrary lengths (English) | 
| Author: | Billington, Elizabeth J. | 
| Author: | Cavenagh, Nicholas J. | 
| Language: | English | 
| Journal: | Czechoslovak Mathematical Journal | 
| ISSN: | 0011-4642 (print) | 
| ISSN: | 1572-9141 (online) | 
| Volume: | 57 | 
| Issue: | 2 | 
| Year: | 2007 | 
| Pages: | 523-551 | 
| Summary lang: | English | 
| . | 
| Category: | math | 
| . | 
| Summary: | The complete tripartite graph $K_{n,n,n}$ has $3n^2$ edges. For any collection of positive integers $x_1,x_2,\dots ,x_m$ with $\sum _{i=1}^m x_i=3n^2$ and $x_i\ge 3$ for $1\le i\le m$, we exhibit an edge-disjoint decomposition of $K_{n,n,n}$ into closed trails (circuits) of lengths $x_1,x_2,\dots ,x_m$. (English) | 
| Keyword: | cycles | 
| Keyword: | decomposing complete tripartite graphs | 
| MSC: | 05C38 | 
| MSC: | 05C70 | 
| idZBL: | Zbl 1174.05100 | 
| idMR: | MR2337613 | 
| . | 
| Date available: | 2009-09-24T11:47:26Z | 
| Last updated: | 2020-07-03 | 
| Stable URL: | http://hdl.handle.net/10338.dmlcz/128188 | 
| . | 
| Reference: | [1] P. Balister: Packing circuits into $K_N$.Combinatorics, Probability and Computing 10 (2001), 463–499. Zbl 1113.05309, MR 1869841, 10.1017/S0963548301004771 | 
| Reference: | [2] P. Balister: Packing closed trails into dense graphs.J. Combinatorial Theory, Ser. B 88 (2003), 107–118. Zbl 1045.05074, MR 1973263, 10.1016/S0095-8956(02)00039-4 | 
| Reference: | [3] E. J. Billington: Decomposing complete tripartite graphs into cycles of length $3$ and $4$.Discrete Math. 197/198 (1999), 123–135. MR 1674855 | 
| Reference: | [4] E. J. Billington: Combinatorial trades: a survey of recent results.Chapter 3 in Designs 2002: Further Computational and Constructive Design Theory (ed. W. D. Wallis), Kluwer Academic Publishers, Boston/Dordrecht/London, 2003, pp. 47–67. Zbl 1056.05014, MR 2041871 | 
| Reference: | [5] N. J. Cavenagh: Decompositions of complete tripartite graphs into $k$-cycles.Australas. J. Combin. 18 (1998), 193–200. Zbl 0924.05051, MR 1658341 | 
| Reference: | [6] N. J. Cavenagh: Further decompositions of complete tripartite graphs into $5$-cycles.Discrete Math. 256 (2002), 55–81. Zbl 1009.05108, MR 1927056 | 
| Reference: | [7] N. J. Cavenagh and E. J. Billington: On decomposing complete tripartite graphs into $5$-cycles.Australas. J. Combin. 22 (2000), 41–62. MR 1795321 | 
| Reference: | [8] N. J. Cavenagh and E. J. Billington: Decompositions of complete multipartite graphs into cycles of even length.Graphs and Combinatorics 16 (2000), 49–65. MR 1750460, 10.1007/s003730050003 | 
| Reference: | [9] M. Horňák and M. Woźniak: Decomposition of complete bipartite even graphs into closed trails.Czech. Math. J. 53 (2003), 127–134. MR 1962004, 10.1023/A:1022931710349 | 
| Reference: | [10] Z. Kocková: Decomposition of even graphs into closed trails.Abstract at Grafy ’03, Javorná, Czech Republic. | 
| Reference: | [11] J. Liu: The equipartite Oberwolfach problem with uniform tables.J. Combin. Theory, Ser. A 101 (2003), 20–34. Zbl 1015.05074, MR 1953278 | 
| Reference: | [12] E. S. Mahmoodian and M. Mirzakhani: Decomposition of complete tripartite graphs into $5$-cycles.In: Combinatorics Advances, Kluwer Academic Publishers, Netherlands, 1995, pp. 235–241. MR 1366852 | 
| Reference: | [13] D. Sotteau: Decomposition of $K_{m,n}(K^*_{m,n})$ into cycles (circuits) of length $2k$.J. Combinatorial Theory (Series B) 30 (1981), 75–81. Zbl 0463.05048, MR 0609596, 10.1016/0095-8956(81)90093-9 | 
| . |