| Title: | Some inequalities involving upper bounds for some matrix operators. I (English) | 
| Author: | Lashkaripour, R. | 
| Author: | Foroutannia, D. | 
| Language: | English | 
| Journal: | Czechoslovak Mathematical Journal | 
| ISSN: | 0011-4642 (print) | 
| ISSN: | 1572-9141 (online) | 
| Volume: | 57 | 
| Issue: | 2 | 
| Year: | 2007 | 
| Pages: | 553-572 | 
| Summary lang: | English | 
| . | 
| Category: | math | 
| . | 
| Summary: | In this paper we consider the problem of finding upper bounds of certain matrix operators such as Hausdorff, Nörlund matrix, weighted mean and summability on sequence spaces $l_p(w)$ and Lorentz sequence spaces $d(w,p)$, which was recently considered in [9] and [10] and similarly to [14] by Josip Pecaric, Ivan Peric and Rajko Roki. Also, this study is an extension of some works by G. Bennett on $l_p$ spaces, see [1] and [2]. (English) | 
| Keyword: | inequality | 
| Keyword: | norm | 
| Keyword: | summability matrix | 
| Keyword: | Hausdorff matrix | 
| Keyword: | Nörlund matrix | 
| Keyword: | weighted mean matrix | 
| Keyword: | weighted sequence space and Lorentz sequence space | 
| MSC: | 15A45 | 
| MSC: | 15A60 | 
| MSC: | 47-99 | 
| MSC: | 47A99 | 
| MSC: | 47B37 | 
| idZBL: | Zbl 1174.15017 | 
| idMR: | MR2337614 | 
| . | 
| Date available: | 2009-09-24T11:47:33Z | 
| Last updated: | 2020-07-03 | 
| Stable URL: | http://hdl.handle.net/10338.dmlcz/128189 | 
| . | 
| Reference: | [1] G. Bennett: Factorizing the classical inequalities.Mem. Amer. Math. Soc. 576 (1996), 1–130. Zbl 0857.26009, MR 1317938 | 
| Reference: | [2] G. Bennett: Inequalities complimentary to Hardy.Quart. J. Math. Oxford (2) 49 (1998), 395–432. Zbl 0929.26013, MR 1652236 | 
| Reference: | [3] D. Borwein and F. P. Cass: Nörlund matrices as bounded operators on $l_p$.Arch. Math. 42 (1984), 464–469. MR 0756700, 10.1007/BF01190697 | 
| Reference: | [4] D. Borwein: Nörlund operators on $l_p$.Canada. Math. Bull. 36 (1993), 8–14. MR 1205888, 10.4153/CMB-1993-002-x | 
| Reference: | [5] G. H. Hardy: An inequality for Hausdorff means.J. London Math. Soc. 18 (1943), 46–50. Zbl 0061.12704, MR 0008854 | 
| Reference: | [6] G. H. Hardy: Divergent Series.2nd edition, American Mathematical Society, 2000. | 
| Reference: | [7] G. H. Hardy and J. E. Littlewood: A maximal theorem with function-theoretic.Acta Math. 54 (1930), 81–116. MR 1555303, 10.1007/BF02547518 | 
| Reference: | [8] G. H. Hardy, J. E. Littlewood and G. Polya: Inequalities.2nd edition, Cambridge University press, Cambridge, 2001. MR 0944909 | 
| Reference: | [9] G. J. O. Jameson and R. Lashkaripour: Lower bounds of operators on weighted $l_p$ spaces and Lorentz sequence spaces.Glasgow Math. J. 42 (2000), 211–223. MR 1763740, 10.1017/S0017089500020061 | 
| Reference: | [10] G. J. O. Jameson and R. Lashkaripour: Norms of certain operators on weighted $l_p$ spaces and Lorentz sequence spaces.J. Inequalities in Pure and Applied Mathematics, 3, Issue 1, Article 6 (2002). MR 1888921 | 
| Reference: | [11] R. Lashkaripour: Lower bounds and norms of operators on Lorentz sequence spaces.Doctoral dissertation (Lancaster, 1997). | 
| Reference: | [12] R. Lashkaripour: Transpose of the Weighted Mean operators on Weighted Sequence Spaces.WSEAS Transaction on Mathematics, Issue 4, 4 (2005), 380–385. MR 2119309 | 
| Reference: | [13] R. Lashkaripour and D. Foroutannia: Lower Bounds for Matrices on Weighted Sequence Spaces.Journal of Sciences Islamic Republic of IRAN, 18 (2007), 49–56. MR 2499829 | 
| Reference: | [14] J. Pecaric, I. Peric and R. Roki: On bounds for weighted norms for matrices and integral operators.Linear Algebra and Appl. 326 (2001), 121–135. MR 1815954 | 
| . |