| Title:
             | 
On locally solid topological lattice groups (English) | 
| Author:
             | 
Khan, Abdul Rahim | 
| Author:
             | 
Rowlands, Keith | 
| Language:
             | 
English | 
| Journal:
             | 
Czechoslovak Mathematical Journal | 
| ISSN:
             | 
0011-4642 (print) | 
| ISSN:
             | 
1572-9141 (online) | 
| Volume:
             | 
57 | 
| Issue:
             | 
3 | 
| Year:
             | 
2007 | 
| Pages:
             | 
963-973 | 
| Summary lang:
             | 
English | 
| . | 
| Category:
             | 
math | 
| . | 
| Summary:
             | 
Let $(G,\tau )$ be a commutative Hausdorff locally solid lattice group. In this paper we prove the following: (1) If $(G,\tau )$ has the $A$(iii)-property, then its completion $(\widehat{G},\hat{\tau })$ is an order-complete locally solid lattice group. (2) If $G$ is order-complete and $\tau $ has the Fatou property, then the order intervals of $G$ are $\tau $-complete. (3) If $(G,\tau )$ has the Fatou property, then $G$ is order-dense in $\widehat{G}$ and $(\widehat{G},\hat{\tau })$ has the Fatou property. (4) The order-bound topology on any commutative lattice group is the finest locally solid topology on it. As an application, a version of the Nikodym boundedness theorem for set functions with values in a class of locally solid topological groups is established. (English) | 
| Keyword:
             | 
topological completion | 
| Keyword:
             | 
locally solid $\ell $-group | 
| Keyword:
             | 
topological continuity | 
| Keyword:
             | 
Fatou property | 
| Keyword:
             | 
order-bound topology | 
| MSC:
             | 
28B15 | 
| MSC:
             | 
46A40 | 
| MSC:
             | 
54H11 | 
| idZBL:
             | 
Zbl 1174.54025 | 
| idMR:
             | 
MR2356933 | 
| . | 
| Date available:
             | 
2009-09-24T11:50:55Z | 
| Last updated:
             | 
2020-07-03 | 
| Stable URL:
             | 
http://hdl.handle.net/10338.dmlcz/128219 | 
| . | 
| Reference:
             | 
[1] C. D. Aliprantis: On the completion of Hausdorff locally solid Riesz spaces.Trans. Amer. Math. Soc. 196 (1974), 105–125. Zbl 0258.46009, MR 0350372, 10.1090/S0002-9947-1974-0350372-0 | 
| Reference:
             | 
[2] C. D. Aliprantis and O. Burkinshaw: A new proof of Nakano’s theorem in locally solid Riesz spaces.Math. Zeit. 144 (1975), 25–33. MR 0385510, 10.1007/BF01214405 | 
| Reference:
             | 
[3] C. D. Aliprantis and O. Burkinshaw: Nakano’s theorem revisited.Michigan Math. J. 23 (1976), 173–176. MR 0454574, 10.1307/mmj/1029001670 | 
| Reference:
             | 
[4] A. Avallone and A. Valente: A decomposition theorem for submeasures.Atti. Sem. Mat. Fis. Univ. Modena XLIII (1995), 81–90. MR 1338263 | 
| Reference:
             | 
[5] A. Boccuto and D. Candeloro: Uniform $s$-boundedness and convergence results for measures with values in complete $\ell $-groups.J. Math. Anal. Appl. 265 (2002), 170–194. MR 1874264, 10.1006/jmaa.2001.7715 | 
| Reference:
             | 
[6] F. G. Bonales, F. J. Trigos-Arrieta and R. V. Mendoza: A characterization of Pontryagin-Van Kampen duality for locally convex spaces.Topology Appl. 121 (2002), 75–89. MR 1903684, 10.1016/S0166-8641(01)00111-0 | 
| Reference:
             | 
[7] N. Bourbaki: Elements of Mathematics, General Topology, Part 1.Addison-Wesley, 1966. Zbl 0301.54001, MR 0205210 | 
| Reference:
             | 
[8] W. W. Comfort, S. Hernandez and F. J. Trigos-Arrieta: Cross sections and homeomorphism classes of Abelian groups equipped with the Bohr topology.Topology Appl. 115 (2001), 215–233. MR 1847464 | 
| Reference:
             | 
[9] W. W. Comfort, S. U. Raczkowski and F. J. Trigos-Arrieta: The dual group of a dense subgroup.Czech. Math. J. 54 (129) (2004), 509–533. MR 2059270, 10.1023/B:CMAJ.0000042588.07352.99 | 
| Reference:
             | 
[10] L. Drewnowski: Uniform boundedness principle for finitely additive vector measures.Bull. Acad. Polon. Sci. Sér. Sci. Math. Astr. et. Phys. 21 (1973), 115–118. Zbl 0248.28007, MR 0316670 | 
| Reference:
             | 
[11] D. H. Fremlin: On the completion of locally solid vector lattices.Pacific J. Math. 43 (1972), 341–347. Zbl 0252.46016, MR 0318832, 10.2140/pjm.1972.43.341 | 
| Reference:
             | 
[12] D. H. Fremlin: Topological Riesz Spaces and Measure Theory.Cambridge University Press, England, 1974. Zbl 0273.46035, MR 0454575 | 
| Reference:
             | 
[13] J. Jakubík: On the affine completeness of lattice ordered groups.Czech. Math. J. 54 (129) (2004), 423–429. MR 2059263, 10.1023/B:CMAJ.0000042381.83544.a7 | 
| Reference:
             | 
[14] G. Jameson: Ordered Linear Spaces, Lecture Notes in Mathematics No. 141, Springer-Verlag, Berlin, Germany.1970. MR 0438077 | 
| Reference:
             | 
[15] J. K. Kalton: Topologies on Riesz groups and applications to measure theory.Proc. London Math. Soc. 28 (1974), 253–273. Zbl 0276.28014, MR 0374377 | 
| Reference:
             | 
[16] A. R. Khan and K. Rowlands: A decomposition theorem for submeasures.Glasgow Math. J. 26 (1985), 67–74. MR 0776678 | 
| Reference:
             | 
[17] S. U. Raczkowski: Totally bounded topological group topologies on the integers.Topology Appl. 121 (2002), 63–74. Zbl 1007.22003, MR 1903683, 10.1016/S0166-8641(01)00110-9 | 
| Reference:
             | 
[18] K. D. Schmidt: Decompositions of vector measures in Riesz spaces and Banach lattices.Proc. Edinburgh Math. Soc. 29 (1986), 23–29. Zbl 0569.28011, MR 0829177 | 
| Reference:
             | 
[19] C. Swartz: The Nikodym boundedness theorem for lattice-valued measures.Arch. Math. 53 (1989), 390–393. Zbl 0661.28003, MR 1016003, 10.1007/BF01195219 | 
| Reference:
             | 
[20] C. Swartz: An Introduction to Functional Analysis.Marcel Dekker, New York, U.S.A., 1992. Zbl 0751.46002, MR 1156078 | 
| . |