Previous |  Up |  Next

Article

Title: Boundary value problems and layer potentials on manifolds with cylindrical ends (English)
Author: Mitrea, Marius
Author: Nistor, Victor
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 57
Issue: 4
Year: 2007
Pages: 1151-1197
Summary lang: English
.
Category: math
.
Summary: We study the method of layer potentials for manifolds with boundary and cylindrical ends. The fact that the boundary is non-compact prevents us from using the standard characterization of Fredholm or compact pseudo-differential operators between Sobolev spaces, as, for example, in the works of Fabes-Jodeit-Lewis and Kral-Wedland . We first study the layer potentials depending on a parameter on compact manifolds. This then yields the invertibility of the relevant boundary integral operators in the global, non-compact setting. As an application, we prove a well-posedness result for the non-homogeneous Dirichlet problem on manifolds with boundary and cylindrical ends. We also prove the existence of the Dirichlet-to-Neumann map, which we show to be a pseudodifferential operator in the calculus of pseudodifferential operators that are “almost translation invariant at infinity.” (English)
Keyword: layer potentials
Keyword: manifolds with cylindrical ends
Keyword: Dirichlet problem
MSC: 31C12
MSC: 35J05
MSC: 35S15
MSC: 47G30
MSC: 58J05
MSC: 58J32
MSC: 58J40
idZBL: Zbl 1174.31002
idMR: MR2357585
.
Date available: 2009-09-24T11:52:15Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128232
.
Reference: [1] B. Ammann, A. Ionescu and V. Nistor: Sobolev spaces on Lie manifolds and regularity for polyhedral domains.Documenta Mathematica 11 (2006), 161–206 (electronic). MR 2262931
Reference: [2] B. Ammann, R. Lauter, V. Nistor and A. Vasy: Complex powers and non-compact manifolds.Comm. Partial Differential Equations 29 (2004), 671–705. MR 2059145, 10.1081/PDE-120037329
Reference: [3] B. Ammann, R. Lauter and V. Nistor: Pseudodifferential operators on manifolds with a Lie structure at infinity.Annals of Math. 165 (2007), 717–747. MR 2335795, 10.4007/annals.2007.165.717
Reference: [4] D. Arnold and W. Wendland: Collocation versus Galerkin procedures for boundary integral methods, In Boundary element methods in engineering.Springer, Berlin, 1982, pp. 18–33. MR 0737197
Reference: [5] D. Arnold, I. Babuška and J. Osborn: Finite element methods: principles for their selection.Comput. Mthods Appl. Mech. Engrg. 45 (1984), 57–96. MR 0759804, 10.1016/0045-7825(84)90151-8
Reference: [6] C. Bacuta, V. Nistor and L. Zikatanov: Improving the convergence of ‘high order finite elements’ on polygons and domains with cusps.Numerische Mathematik 100 (2005), 165–184. MR 2135780, 10.1007/s00211-005-0588-3
Reference: [7] S. Coriasco, E. Schrohe and J. Seiler: Differential operators on conic manifolds: Maximal regularity and parabolic equations, preprint.. MR 1904055
Reference: [8] B. Dahlberg and C. Kenig: Hardy spaces and the Neumann problem in $L^p$ for Laplace’s equation in Lipschitz domains.Annals of Math. 125 (1987), 437–465. MR 0890159, 10.2307/1971407
Reference: [9] A. Erkip and E. Schrohe: Normal solvability of elliptic boundary value problems on asymptotically flat manifolds.J. Funct. Anal. 109 (1992), 22–51. MR 1183603, 10.1016/0022-1236(92)90010-G
Reference: [10] E.B. Fabes, M. Jodeit and J.E. Lewis: Double layer potentials for domains with corners and edges.Indiana Univ. Math. J. 26 (1977), 95–114. MR 0432899, 10.1512/iumj.1977.26.26007
Reference: [11] E.B. Fabes, M. Jodeit and J.E. Lewis: On the spectra of a Hardy kernel.J. Funct. Anal 21 (1976), 187–194. MR 0394311, 10.1016/0022-1236(76)90076-8
Reference: [12] E. Fabes, M. Jodeit and N. Riviere: Potential techniques for boundary value problems on $C^1$ domains.Acta Math. 141 (1978), 165–186. MR 0501367, 10.1007/BF02545747
Reference: [13] J. Gill and G. Mendoza: Adjoints of elliptic cone operators.Amer. J. Math. 125 (2003), 357–408. MR 1963689, 10.1353/ajm.2003.0012
Reference: [14] G. Grubb: Functional calculus of pseudodifferential boundary value problems. Second edition.Progress in Mathematics 65, Birkhäuser, Boston, 1996. MR 1385196
Reference: [15] W. V. D. Hodge: The Theory and Applications of Harmonic Integrals.Cambridge University Press, 1941. Zbl 0024.39703, MR 0003947
Reference: [16] T. Angell, R. Kleinman and J. Král: Layer potentials on boundaries with corners and edges.Časopis Pěst. Mat. 113 (1988), 387–402. MR 0981880
Reference: [17] J. Král: Potential theory-surveys and problems.Lecture Notes in Mathematics, 1344, Proceedings of the Conference on Potential Theory held in Prague, Král, J. and Lukeš, J. and Netuka, I. and Veselý, J. Eds., Springer, Berlin, 1988. MR 0973877
Reference: [18] J. Král and W. Wendland: Some examples concerning applicability of the Fredholm-Radon method in potential theory.Apl. Mat. 31 (1986), 293–308. MR 0854323
Reference: [19] J. Král: Integral operators in potential theory.Lecture Notes in Mathematics 823, Springer-Verlag, Berlin, 1980. MR 0590244
Reference: [20] K. Kodaira: Harmonic fields in Riemannian manifolds (Generalized potential theory).Annals of Math. 50 (1949), 587–665. Zbl 0034.20502, MR 0031148, 10.2307/1969552
Reference: [21] J. J. Kohn and D. C. Spencer: Complex Neumann problems.Annals of Math. 66 (1957), 89–140. MR 0087879, 10.2307/1970119
Reference: [22] V. A. Kondratiev: Boundary value problems for elliptic equations in domains with conical or angular points.Transl. Moscow Math. Soc. 16 (1967), 227–313. MR 0226187
Reference: [23] V. A. Kozlov, V. G. Mazya and J. Rossmann: Spectral problems associated with corner singularities of solutions of elliptic equations.Mathematical Surveys and Monographs 85, AMS, Providence, RI, 2001. MR 1788991
Reference: [24] R. Lauter, B. Monthubert and V. Nistor: Pseudodifferential analysis on continuous family groupoids.Documenta Math. (2000), 625–655 (electronic). MR 1800315
Reference: [25] R. Lauter and S. Moroianu: Fredholm theory for degenerate pseudodifferential operators on manifolds with fibered boundaries.Commun. Partial Differ. Equations 26 (2001), 233–283. MR 1842432, 10.1081/PDE-100001754
Reference: [26] J. Lewis and C.  Parenti: Pseudodifferential operators of Mellin type.Comm. Part. Diff. Eq. 8 (1983), 477–544. MR 0695401, 10.1080/03605308308820276
Reference: [27] P. Loya and J. Park: Boundary problems for Dirac type operators on manifolds with multi-cylindrical end boundaries.Ann. Global Anal. Geom. 3 (2006), 337–383. MR 2249562
Reference: [28] R. B. Melrose: The Atiyah-Patodi-Singer index theorem.Research Notes in Mathematics 4, A. K. Peters, Ltd., MA, 1993. Zbl 0796.58050, MR 1348401
Reference: [29] R. B. Melrose: Geometric scattering theory.Stanford Lectures, Cambridge University Press, Cambridge, 1995. Zbl 0849.58071, MR 1350074
Reference: [30] R. B. Melrose and G. Mendoza: Elliptic operators of totally characteristic type.MSRI Preprint, 1983.
Reference: [31] R.B. Melrose and V. Nistor: $K$-Theory of $C^*$-algebras of $b$-pseudodifferential operators.Geom. Funct. Anal. 8 (1998), 99–122. MR 1601850
Reference: [32] M. Mitrea and V. Nistor: A note on boundary value problems on manifolds with cylindrical ends.In Aspects of boundary problems in analysis and geometry, Birkhäuser, Basel, 2004, pp. 472–494. MR 2072504
Reference: [33] M. Mitrea and M.E. Taylor: Boundary layer methods for Lipschitz domains in Riemannian manifolds.J. Funct. Anal. 163 (1999), 181–251. MR 1680487, 10.1006/jfan.1998.3383
Reference: [34] M. Mitrea and M. E. Taylor: Potential theory on Lipschitz domains in Riemannian manifolds: Sobolev-Besov space results and the Poisson problem.J. Funct. Anal. 176 (2000), 1–79. MR 1781631, 10.1006/jfan.2000.3619
Reference: [35] D. Mitrea, M. Mitrea and M. Taylor: Layer potentials, the Hodge Laplacian and global boundary problems in non-smooth Riemannian manifolds.Memoirs of the Amer. Math. Soc. 150, 2001. MR 1809655
Reference: [36] J. Nečas: Les méthodes directes en théorie des équations elliptiques.Masson et Cie, Paris, 1967. MR 0227584
Reference: [37] V. Nistor: Pseudodifferential opearators on non-compact manifolds and analysis on polyhedral domains.Proceedings of the Workshop on Spectral Geometry of Manifolds with Boundary and Decomposition of Manifolds, Roskilde University, Contemporary Mathematics, AMS, Rhode Island, 2005, pp. 307–328. MR 2114493
Reference: [38] M. Reed and B. Simon: Methods of modern mathematical physics.I, second edition, Academic Press Inc., New York, 1980. MR 0751959
Reference: [39] M. Schechter: Principles of functional analysis.Graduate Studies in Mathematics 36, second edition, AMS, Providence, RI, 2002. MR 1861991
Reference: [40] E. Schrohe: Spectral invariance, ellipticity and the Fredholm property for pseudodifferential operators on weighted Sobolev spaces.Ann. Global Anal. and Geometry 10 (1992), 237–254. Zbl 0788.47046, MR 1186013, 10.1007/BF00136867
Reference: [41] E. Schrohe: Fréchet algebra technique for boundary value problems on noncompact manifolds: Fredholm criteria and functional calculus via spectral invariance.Math. Nach. (1999), 145–185. MR 1676318
Reference: [42] E. Schrohe and B.-W. Schulze: Boundary Value Problems in Boutet de Monvel’s Algebra for Manifolds with Conical Singularities II.Boundary value problems, Schrödinger operators, deformation quantization, Math. Top. 8, Akademie Verlag, Berlin, 1995, pp. 70–205. MR 1389012
Reference: [43] E. Schrohe and J. Seiler: Ellipticity and invertibility in the cone algebra on $L_p$-Sobolev spaces.Integr. Equat. Oper. Theory 41 (2001), 93–114. MR 1844462, 10.1007/BF01202533
Reference: [44] B.-W. Schulze: Boundary value problems and singular pseudo-differential operators.John Wiley & Sons, Chichester-New York-Weinheim, 1998. Zbl 0907.35146, MR 1631763
Reference: [45] M. A. Shubin: Pseudodifferential operators and spectral theory.Springer Verlag, Berlin-Heidelberg-New York, 1987. Zbl 0616.47040, MR 0883081
Reference: [46] M. A. Shubin: Spectral theory of elliptic operators on non-compact manifolds.Astérisque 207 (1992), 35–108. Zbl 0793.58039, MR 1205177
Reference: [47] M. E. Taylor: Pseudodifferential operators.Princeton Mathematical Series 34, Princeton University Press, Princeton, N.J., 1981. Zbl 0453.47026, MR 0618463
Reference: [48] M. E. Taylor: Partial differential equations, Applied Mathematical Sciences, vol. II.Springer-Verlag, New York, 1996. MR 1395147
Reference: [49] M. E. Taylor: Pseudodifferential Operators, Paradifferential Operators, and Layer Potentials, Mathematical Surveys and Monographs 81.Amer. Math. Soc., 2000. MR 1766415
Reference: [50] G. Verchota: Layer potentials and boundary value problems for Laplace’s equation in Lipschitz domains.J. Funct. Anal. 59 (1984), 572–611. MR 0769382, 10.1016/0022-1236(84)90066-1
.

Files

Files Size Format View
CzechMathJ_57-2007-4_6.pdf 560.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo