| Title:
             | 
Statistical maps. I: Basic properties (English) | 
| Author:
             | 
Bugajski, Sławomir | 
| Language:
             | 
English | 
| Journal:
             | 
Mathematica Slovaca | 
| ISSN:
             | 
0139-9918 | 
| Volume:
             | 
51 | 
| Issue:
             | 
3 | 
| Year:
             | 
2001 | 
| Pages:
             | 
321-342 | 
| . | 
| Category:
             | 
math | 
| . | 
| MSC:
             | 
60A99 | 
| MSC:
             | 
81P10 | 
| idZBL:
             | 
Zbl 1088.81021 | 
| idMR:
             | 
MR1842320 | 
| . | 
| Date available:
             | 
2009-09-25T11:52:55Z | 
| Last updated:
             | 
2012-08-01 | 
| Stable URL:
             | 
http://hdl.handle.net/10338.dmlcz/130752 | 
| . | 
| Related article:
             | 
http://dml.cz/handle/10338.dmlcz/130630 | 
| . | 
| Reference:
             | 
[1] ALFSEN E. M.: Compact Convex Sets and Boundary Integrals.Springer, Berlin, 1971. Zbl 0209.42601, MR 0445271 | 
| Reference:
             | 
[2] ASIMOW L.-ELLIS A. J.: Convexity Theory and Its Applications in Functional Analysis.Academic Press, London, 1980. Zbl 0453.46013, MR 0623459 | 
| Reference:
             | 
[3] BARRA J. R.: Notions fondamentales de statistique mathématique.Dunod, Paris, 1971. Zbl 0257.62004, MR 0402992 | 
| Reference:
             | 
[4] BAUER H.: Probability Theory and Elements of Measure Theory.Academic Press, London, 1981. Zbl 0466.60001, MR 0636091 | 
| Reference:
             | 
[5] BELTRAMETTI E. G.-BUGAJSKI S.: A Classical extension of quantum mechanics.J. Phys. A 28 (1995), 3329-3343. Quantum observables in classical frameworks, Internat. J. Theoгet. Phys. 34 (1995), 1221-1229. Zbl 0859.46049, MR 1344371 | 
| Reference:
             | 
[б] BELTRAMETTI E. G.-BUGAJSKI S.: Effect algebras and statistical physical theories.J. Math. Phys. 38 (1997), 3020-3030. Zbl 0874.06009, MR 1449546 | 
| Reference:
             | 
[7] BILLINGSLEY P.: Ergodic Theory and Information.Wiley, New York, 1965. Zbl 0141.16702, MR 0192027 | 
| Reference:
             | 
[8] BILLINGSLEY P.: Probability and Measure.Wiley, New Yoгk, 1979. Zbl 0411.60001, MR 0534323 | 
| Reference:
             | 
[9] BUGAJSKI S.: Fundamentals of fuzzy probability theory.Internat. J. Theoret. Phys. 35 (1996), 2229-2244. Zbl 0872.60003, MR 1423402 | 
| Reference:
             | 
[10] BUGAJSKI S.: Fuzzy stochastic processes.Open Syst. Inf. Dyn. 5 (1998), 169-185. Zbl 0908.60044 | 
| Reference:
             | 
[11] BUGAJSKI S.: Net entropies of fuzzy stochastic processes.Open Syst. Inf. Dyn. 5 (1998), 187-200. Zbl 0908.60044 | 
| Reference:
             | 
[12] BUGAJSKI S.: Fuzzy dynamics in terms of fuzzy probability theory.In: IFSA '97 Prague. Seventh International Fuzzy Systems Association World Congress. Proceedings Vol. IV (M. Mareš, R. Mesiar, V. Novák, J. Ramík, A. Stupňanová, eds.), Academia, Pгague, 1997, pp. 255-260. | 
| Reference:
             | 
[13] BUGAJSKI S.: Statistical maps II. Operational random variables and the Bell phenomenon.Math. Slovaca 51 (2001), 343-361. Zbl 1088.81022, MR 1842321 | 
| Reference:
             | 
[14] BUGAJSKI S.-HELLWIG K.-E.-STULPE W.: On fuzzy random variables and statistical maps.Rep. Math. Phys. 41 (1998), 1-11. Zbl 1026.60501, MR 1617902 | 
| Reference:
             | 
[15] BUSCH P.-RUCH E.: The measure cone: irreversibüity as a geometrical phenomenon.Internat. J. Q. Chem. 41 (1992), 163-185. | 
| Reference:
             | 
[16] GUDDER S.: Fuzzy probability theory.Demonstratio Math. 31 (1998), 235-254. Zbl 0984.60001, MR 1623780 | 
| Reference:
             | 
[17] MACKEY G.: The Mathematical Foundations of Quantum Mechanics..Benjamin, New York, 1963. Zbl 0114.44002 | 
| Reference:
             | 
[18] NEVEU J.: Mathematical Foundations of the Calculus of Probability.Holden-Day, Inc, San Francisco, 1965 [French original: Bases mathématiques du calcul des probabilités, Mason et Cie, Paris, 1964]. Zbl 0137.11301, MR 0198505 | 
| Reference:
             | 
[19] REED M.-SIMON B.: Methods of Modern Mathematical Physics 1.Functional Analysis, Academic Press, New York, 1972. Zbl 0242.46001 | 
| Reference:
             | 
[20] RIEČAN B.-NEUBRUNN T.: Integral, Measure, and Ordeńng.Math. Appl. 411, Kluwer, Dordrecht, 1997. | 
| Reference:
             | 
[21] RUDIN W.: Functional Analysis.McGraw-Hill, New York, 1973. Zbl 0253.46001, MR 0365062 | 
| Reference:
             | 
[22] SCHAEFER H. H.: Topological Vector Spaces.(Зrd ed.), Springer-Verlag, Berlin, 1971. Zbl 0217.16002, MR 0342978 | 
| Reference:
             | 
[23] SINGER M.-STULPE W.: Phase-space representations of general statistical physical theories.J. Math. Phys. 33 (1992), 131-142. MR 1141510 | 
| Reference:
             | 
[24] STULPE W.: Conditional expectations, conditional distributions, and a posteriori ensembles in generalized probability theory.Internat. J. Theoret. Phys. 27 (1988), 587-611. Zbl 0645.60007, MR 0950546 | 
| Reference:
             | 
[25] VERSIK A. M.: Multivalued mappings with invariant measure (polymorphisms) and Markov operators.Zap. Nauchn. Sem. S.-Peterburg. (Leningrad.) Otdel. Mat. Inst. Steklov. (POMI) ((LOMI)) 72 (1977), 26-61, 223. (Russian) MR 0476998 | 
| Reference:
             | 
[26] WERNER R.: Physical uniformities on the state space of nonrelativistic quantum mechanics, Found. Phys. 13 (1983), 859-881. MR 0788064 | 
| . |