[2] ASIMOW L.-ELLIS A. J.: 
Convexity Theory and Its Applications in Functional Analysis. Academic Press, London, 1980. 
MR 0623459 | 
Zbl 0453.46013 
[4] BAUER H.: 
Probability Theory and Elements of Measure Theory. Academic Press, London, 1981. 
MR 0636091 | 
Zbl 0466.60001 
[5] BELTRAMETTI E. G.-BUGAJSKI S.: 
A Classical extension of quantum mechanics. J. Phys. A 28 (1995), 3329-3343. Quantum observables in classical frameworks, Internat. J. Theoгet. Phys. 34 (1995), 1221-1229. 
MR 1344371 | 
Zbl 0859.46049 
[б] BELTRAMETTI E. G.-BUGAJSKI S.: 
Effect algebras and statistical physical theories. J. Math. Phys. 38 (1997), 3020-3030. 
MR 1449546 | 
Zbl 0874.06009 
[9] BUGAJSKI S.: 
Fundamentals of fuzzy probability theory. Internat. J. Theoret. Phys. 35 (1996), 2229-2244. 
MR 1423402 | 
Zbl 0872.60003 
[10] BUGAJSKI S.: 
Fuzzy stochastic processes. Open Syst. Inf. Dyn. 5 (1998), 169-185. 
Zbl 0908.60044 
[11] BUGAJSKI S.: 
Net entropies of fuzzy stochastic processes. Open Syst. Inf. Dyn. 5 (1998), 187-200. 
Zbl 0908.60044 
[12] BUGAJSKI S.: Fuzzy dynamics in terms of fuzzy probability theory. In: IFSA '97 Prague. Seventh International Fuzzy Systems Association World Congress. Proceedings Vol. IV (M. Mareš, R. Mesiar, V. Novák, J. Ramík, A. Stupňanová, eds.), Academia, Pгague, 1997, pp. 255-260.
[13] BUGAJSKI S.: 
Statistical maps II. Operational random variables and the Bell phenomenon. Math. Slovaca 51 (2001), 343-361. 
MR 1842321 | 
Zbl 1088.81022 
[14] BUGAJSKI S.-HELLWIG K.-E.-STULPE W.: 
On fuzzy random variables and statistical maps. Rep. Math. Phys. 41 (1998), 1-11. 
MR 1617902 | 
Zbl 1026.60501 
[15] BUSCH P.-RUCH E.: The measure cone: irreversibüity as a geometrical phenomenon. Internat. J. Q. Chem. 41 (1992), 163-185.
[17] MACKEY G.: 
The Mathematical Foundations of Quantum Mechanics. Benjamin, New York, 1963. 
Zbl 0114.44002 
[18] NEVEU J.: 
Mathematical Foundations of the Calculus of Probability. Holden-Day, Inc, San Francisco, 1965 [French original: Bases mathématiques du calcul des probabilités, Mason et Cie, Paris, 1964]. 
MR 0198505 | 
Zbl 0137.11301 
[19] REED M.-SIMON B.: 
Methods of Modern Mathematical Physics 1. Functional Analysis, Academic Press, New York, 1972. 
Zbl 0242.46001 
[20] RIEČAN B.-NEUBRUNN T.: Integral, Measure, and Ordeńng. Math. Appl. 411, Kluwer, Dordrecht, 1997.
[23] SINGER M.-STULPE W.: 
Phase-space representations of general statistical physical theories. J. Math. Phys. 33 (1992), 131-142. 
MR 1141510 
[24] STULPE W.: 
Conditional expectations, conditional distributions, and a posteriori ensembles in generalized probability theory. Internat. J. Theoret. Phys. 27 (1988), 587-611. 
MR 0950546 | 
Zbl 0645.60007 
[25] VERSIK A. M.: 
Multivalued mappings with invariant measure (polymorphisms) and Markov operators. Zap. Nauchn. Sem. S.-Peterburg. (Leningrad.) Otdel. Mat. Inst. Steklov. (POMI) ((LOMI)) 72 (1977), 26-61, 223. (Russian) 
MR 0476998 
[26] WERNER R.: 
Physical uniformities on the state space of nonrelativistic quantum mechanics, Found. Phys. 13 (1983), 859-881.  
MR 0788064