Previous |  Up |  Next


Title: Preduals of Sobolev-Campanato spaces (English)
Author: Gröger, Konrad
Author: Recke, Lutz
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 126
Issue: 2
Year: 2001
Pages: 403-410
Summary lang: English
Category: math
Summary: We present definitions of Banach spaces predual to Campanato spaces and Sobolev-Campanato spaces, respectively, and we announce some results on embeddings and isomorphisms between these spaces. Detailed proofs will appear in our paper in Math. Nachr. (English)
Keyword: scales of Banach spaces
Keyword: embedding theorems
Keyword: predual to Campanato spaces
Keyword: Sobolev-Campanato spaces
MSC: 46A13
MSC: 46A20
MSC: 46B10
MSC: 46E35
idZBL: Zbl 0983.46032
idMR: MR1844278
DOI: 10.21136/MB.2001.134016
Date available: 2009-09-24T21:51:59Z
Last updated: 2020-07-29
Stable URL:
Reference: [1] S. Campanato: Proprietà di una famiglia di spazi funzionali.Ann. Scuola Norm. Sup. Pisa 18 (1964), 137–160. Zbl 0133.06801, MR 0167862
Reference: [2] J. A. Griepentrog: Zur Regularität linearer elliptischer und parabolischer Randwertprobleme mit nichtglatten Daten.Thesis, Humboldt-Universität zu Berlin, 2000. Zbl 0986.35030, MR 1867697
Reference: [3] K. Gröger, L. Recke: Preduals of Camapanato spaces and Sobolev-Campanato spaces: A general approach.Preprint 498 (1999), Weierstraß-Institut für Angewandte Analysis und Stochastik (to appear).
Reference: [4] O. A. Ladyshenskaya, N. N. Ural’tseva: Linear and Quasilinear Elliptic Equations.Nauka, Moskva, 1964, 1973. (Russian)
Reference: [5] K. de Leeuw: Banach spaces of Lipschitz functions.Studia Math. 21 (1961), 55–66. Zbl 0101.08901, MR 0140927, 10.4064/sm-21-1-55-66
Reference: [6] J. M. Rakotoson: Equivalence between the growth of $\int _{B(x,r)}|\nabla u|^py$ and $T$ in the equation $P[u]=T$.J. Differ. Equations 86 (1990), 102–122. Zbl 0707.35033, MR 1061892
Reference: [7] J. M. Rakotoson: Quasilinear equations and spaces of Campanato-Morrey type.Comm. Partial Differ. Equations 16 (1991), 1155–1182. Zbl 0827.35021, MR 1116857, 10.1080/03605309108820793
Reference: [8] H. Triebel: Theory of Function Spaces II.Birkhäuser-Verlag, Basel, 1992. Zbl 0763.46025, MR 1163193
Reference: [9] G. Troianiello: Elliptic Differential Equations and Obstacle Problems.Plenum Press, New York, 1987. Zbl 0655.35002, MR 1094820


Files Size Format View
MathBohem_126-2001-2_13.pdf 344.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo