Previous |  Up |  Next


Title: Water-wave problem for a vertical shell (English)
Author: Kuznetsov, Nikolay
Author: Maz'ya, Vladimir
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 126
Issue: 2
Year: 2001
Pages: 411-420
Summary lang: English
Category: math
Summary: The uniqueness theorem is proved for the linearized problem describing radiation and scattering of time-harmonic water waves by a vertical shell having an arbitrary horizontal cross-section. The uniqueness holds for all frequencies, and various locations of the shell are possible: surface-piercing, totally immersed and bottom-standing. A version of integral equation technique is outlined for finding a solution. (English)
Keyword: time-harmonic velocity potential
Keyword: uniqueness theorem
Keyword: Helmholtz equation
Keyword: Neumann’s eigenvalue problem for Laplacian
Keyword: integral equation method
Keyword: weighted Hölder spaces
Keyword: velocity potential
Keyword: uniqueness
Keyword: Neumann’s eigenvalue problem
Keyword: Laplacian
Keyword: linearized problem
Keyword: radiation
Keyword: scattering
Keyword: time-harmonic water wave
Keyword: vertical shell
MSC: 35Q35
MSC: 76B15
MSC: 76M25
idZBL: Zbl 1011.76011
idMR: MR1844279
DOI: 10.21136/MB.2001.134028
Date available: 2009-09-24T21:52:09Z
Last updated: 2020-07-29
Stable URL:
Reference: [1] C. J. R. Garrett: Bottomless harbours.J. Fluid Mech. 43 (1970), 433–449. Zbl 0212.60101, 10.1017/S0022112070002495
Reference: [2] A. Hulme: Some applications of Maz’ja’s uniqueness theorem to a class of linear water wave problems.Math. Proc. Camb. Phil. Soc. 95 (1984), 511–519. Zbl 0546.76031, MR 0727091, 10.1017/S0305004100061417
Reference: [3] F. John: On the motion of floating bodies, II.Comm. Pure Appl. Math. 3 (1950), 45–101. MR 0037118, 10.1002/cpa.3160030106
Reference: [4] N. G. Kuznetsov: Plane problem of the steady-state oscillations of a fluid in the presence of two semiimmersed cylinders.Math. Notes Acad. Sci. USSR 44 (1988), 685–690. MR 0972199
Reference: [5] N. G. Kuznetsov: Uniqueness of a solution of a linear problem for stationary oscillations of a liquid.Diff. Equations 27 (1991), 187–194. Zbl 0850.76059, MR 1109387
Reference: [6] N. Kuznetsov, P. McIver: On uniqueness and trapped modes in the water-wave problem for a surface-piercing axisymmetric body.Q. J. Mech. Appl. Math. 50 (1997), 565–580. MR 1488385, 10.1093/qjmam/50.4.565
Reference: [7] M. J. Lighthill: Two-dimensional analyses related to wave-energy extraction by submerged resonant ducts.J. Fluid Mech. 91 (1979), 253–317. Zbl 0403.76025, 10.1017/S0022112079000148
Reference: [8] V. G. Maz’ya: Solvability of the problem on the oscillations of a fluid containing a submerged body.J. Soviet Math. 10 (1978), 86–89. 10.1007/BF01109726
Reference: [9] V. G. Maz’ya: Boundary integral equations.Encyclopaedia of Math. Sciences 27 (1991), 127–222. MR 1098507, 10.1007/978-3-642-58175-5_2
Reference: [10] V. G. Maz’ya, B. A. Plamenevskii: Schauder estimates of solutions of elliptic boundary value problems in domains with edges on the boundary.Elliptic boundary value problems AMS Transl. 123 (1984), 141–169.
Reference: [11] V. G. Maz’ya, J. Rossmann: Über die Asymptotic der Lösungen elliptischer Randwertaufgaben in der Umgebung von Kanten.Math. Nachr. 138 (1988), 27–53. MR 0975198, 10.1002/mana.19881380103
Reference: [12] M. McIver: An example of non-uniqueness in the two-dimensional linear water-wave problem.J. Fluid Mech. 315 (1996), 257–266. Zbl 0869.76010, MR 1403701, 10.1017/S0022112096002418
Reference: [13] P. McIver, M. McIver: Trapped modes in an axisymmetric water-wave problem.Q. J. Mech. Appl. Math. 50 (1997), 165–178. MR 1451065, 10.1093/qjmam/50.2.165
Reference: [14] M. J. Simon: Wave-energy extraction by a submerged cylindrical resonant duct.J. Fluid Mech. 104 (1981), 159–187. Zbl 0463.76021, 10.1017/S0022112081002875
Reference: [15] M. J. Simon, N. G. Kuznetsov: On uniqueness of the water-wave problem for a floating toroidal body.Appl. Math. Report 96/1 (1996), Department of Mathematics, University of Manchester, England.
Reference: [16] M. J. Simon, F. Ursell: Uniqueness in linearized two-dimensional water-wave problem.J. Fluid Mech. 148 (1984), 137–154. MR 0778139, 10.1017/S0022112084002287
Reference: [17] J. R. Thomas: The absorption of wave energy by a three-dimensional submerged duct.J. Fluid Mech. 104 (1981), 189–215. Zbl 0455.76007, 10.1017/S0022112081002887
Reference: [18] F. Ursell: Surface waves on deep water in the presence of a submerged circular cylinder, I.Proc. Camb. Phil. Soc. 46 (1950), 141–152. Zbl 0035.42201, MR 0033714, 10.1017/S0305004100025561
Reference: [19] F. Ursell: Some unsolved and unfinished problems in the theory of waves.Wave Asymptotics, Camb. Univ. Press, Cambridge, 1992. Zbl 0817.76008, MR 1174354
Reference: [20] B. R. Vainberg, V. G. Maz’ya: On the problem of the steady state oscillations of a fluid layer of variable depth.Trans. Moscow Math. Soc. 28 (1973), 56–73. MR 0481654


Files Size Format View
MathBohem_126-2001-2_14.pdf 337.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo