Previous |  Up |  Next


Title: Power bounded and exponentially bounded matrices (English)
Author: Koliha, J. J.
Author: Straškraba, Ivan
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 44
Issue: 4
Year: 1999
Pages: 289-308
Summary lang: English
Category: math
Summary: The paper gives a new characterization of eigenprojections, which is then used to obtain a spectral decomposition for the power bounded and exponentially bounded matrices. The applications include series and integral representations of the Drazin inverse, and investigation of the asymptotic behaviour of the solutions of singular and singularly perturbed differential equations. An example is given of localized travelling waves for a system of conservation laws. (English)
Keyword: power and exponentially bounded matrices
Keyword: spectral decomposition
Keyword: Drazin inverse
Keyword: singularly perturbed differential equations
Keyword: asymptotic behaviour
MSC: 15A09
MSC: 34D05
MSC: 34E15
MSC: 39A11
idZBL: Zbl 1060.34506
idMR: MR1698770
DOI: 10.1023/A:1023032629988
Date available: 2009-09-22T18:00:57Z
Last updated: 2020-07-02
Stable URL:
Reference: [1] S. L. Campbell: Singular Systems of Differential Equations.Pitman, Boston, 1980. Zbl 0419.34007
Reference: [2] S. L. Campbell and C. D. Meyer: Generalized Inverses of Linear Transformations.Surveys and Reference Works in Mathematics, Pitman, London, 1979.
Reference: [3] A. S. Householder: Theory of Matrices in Numerical Analysis.Blaisdell, New York, 1964. Zbl 0161.12101, MR 0175290
Reference: [4] Tai-Ping Liu: Resonance for quasilinear hyperbolic equation.Bull. Amer. Math. Soc. 6 (1982), 463–465. MR 0648536, 10.1090/S0273-0979-1982-15018-2
Reference: [5] I. Marek and K. Žitný: Matrix Analysis for Applied Sciences, volume 1, 2.Teubner-Texte zur Mathematik 60, 84, Teubner, Leipzig, 1983, 1986. MR 0731071
Reference: [6] B. Noble and J. W. Daniel: Applied Linear Algebra, 3rd edition.Prentice-Hall, Englewood Cliffs, 1988. MR 0572995
Reference: [7] U. G. Rothblum: A representation of the Drazin inverse and characterizations of the index.SIAM J. Appl. Math. 31 (1976), 646–648. Zbl 0355.15008, MR 0422303, 10.1137/0131057
Reference: [8] U. G. Rothblum: Resolvent expansions of matrices and applications.Lin. Algebra Appl. 38 (1981), 33–49. Zbl 0468.15002, MR 0636023, 10.1016/0024-3795(81)90006-9
Reference: [9] U. G. Rothblum: Expansions of sums of matrix powers.SIAM Review 23 (1981), 143–164. Zbl 0466.15005, MR 0618637, 10.1137/1023036


Files Size Format View
AplMat_44-1999-4_3.pdf 387.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo