Previous |  Up |  Next


Title: Application of homogenization theory related to Stokes flow in porous media (English)
Author: Bang, Børre
Author: Lukkassen, Dag
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 44
Issue: 4
Year: 1999
Pages: 309-319
Summary lang: English
Category: math
Summary: We consider applications, illustration and concrete numerical treatments of some homogenization results on Stokes flow in porous media. In particular, we compute the global permeability tensor corresponding to an unidirectional array of circular fibers for several volume-fractions. A 3-dimensional problem is also considered. (English)
Keyword: homogenization theory
Keyword: Stokes flow
Keyword: porous media
Keyword: numerical experiments
MSC: 35B27
MSC: 76D05
MSC: 76D07
MSC: 76S05
idZBL: Zbl 1059.76533
idMR: MR1698771
DOI: 10.1023/A:1023084614058
Date available: 2009-09-22T18:01:03Z
Last updated: 2020-07-02
Stable URL:
Reference: [1] Allaire, G.: Homogenization of the Stokes flow in connected porous medium.Asymptotic Analysis 3 (1989), 203–222. MR 1020348, 10.3233/ASY-1989-2302
Reference: [2] Allaire, G.: Homogenization of the unsteady Stokes equation in porous media.In: Progress in Partial Differetial Equations: Calculus of variation, applications, Pitman Research notes in mathematics Series 267, New York, Longman Higher Education, 1992.
Reference: [3] Arbogast, T., Douglas, J., Hornung, U.: Derivation of the double porosity modell of single phase flow via homogenization theory.SIAM J. Math. Anal. 21 (1990), 823–836. MR 1052874, 10.1137/0521046
Reference: [4] Bakhvalov, N., Panasenko, G.: Homogenization: Average Processes in Periodic Media.Dordrecht, Kluwer Academic Publishers, 1989. MR 1112788
Reference: [5] Beliaev, A., Kozlov, S: Darcy equation for random porous media.Comm. Pure and Appl. Math. XLIX (1996), 1–34. MR 1369834, 10.1002/(SICI)1097-0312(199601)49:1<1::AID-CPA1>3.0.CO;2-J
Reference: [6] Bourgear, A., Carasso, C., Luckhaus, S., Mikelic, A.: Mathematical Modelling of Flow Through Porous Media.London: World Scientific, 1996.
Reference: [7] Bourgeat, A., Mikelic, A.: Homogenization of a polymer flow through a porous medium.Nonlinear Anal., Theory Methods Appl. 26 (1996), 1221–1253. MR 1376100, 10.1016/0362-546X(94)00285-P
Reference: [8] Donato, P., Saint Jean Paulin, J.: Stokes flow in a porous medium with a double periodicity.Progress in Partial Differetial Equations: the Metz Surveys, Pitman, Longman Press, 1994, pp. 116–129. MR 1316195
Reference: [9] Ene, I., Saint Jean Paulin, J.: On a model of fractured porous media.In:, 1996.
Reference: [10] Ene, H., Poliševski, D.: Thermal Flow in Porous Media.Dordrecht, D. Reidel Publishing Company, 1987.
Reference: [11] Holmbom, A.: Some Modes of Convergence and their Application to Homogenization and Optimal Composites Design.Doctoral Thesis, Luleå University of Technology, Sweden, 1996.
Reference: [12] Lipton, R., Avellaneda. M.: A Darcy’s law for slow viscous flow through a stationary array of bubbles.Proc. Roy. Soc. Edinburgh 114A (1990,), 71–79. MR 1051608
Reference: [13] Lukkassen, D.: Some sharp estimates connected to the homogenized $p$-Laplacian equation.ZAMM—Z. angew. Math. Mech. 76 (1996), no. S2, 603–604. Zbl 1126.35303
Reference: [14] Lukkassen, D.: Upper and lower bounds for averaging coefficients.Russian Math. Surveys 49 (1994), no. 4, 114–115.
Reference: [15] Lukkassen, D.: On estimates of the effective energy for the Poisson equation with a $p$-Laplacian.Russian Math. Surveys 51 (1996), no. 4, 739–740. MR 1422238, 10.1070/RM1996v051n04ABEH002981
Reference: [16] Lukkassen, D.: Formulae and Bounds Connected to Homogenization and Optimal Design of Partial Differential Operators and Integral Functionals.Ph.D. thesis (ISBN: 82-90487-87-8), University of Tromsø, 1996.
Reference: [17] Lukkassen, D., Persson, L.E., Wall, P.: On some sharp bounds for the homogenized $p$-Poisson equation (communicated by O.A. Oleinik).Applicable Anal. 58 (1995), 123–135. MR 1384593, 10.1080/00036819508840366
Reference: [18] Lukkassen, D., Persson, L.E., Wall, P.: Some engineering and mathematical aspects on the homogenization method.Composites Engineering 5 (1995), no. 5, 519–531. 10.1016/0961-9526(95)00025-I
Reference: [19] Meidell, A., Wall, P.: Homogenization and design of structures with optimal macroscopic behaviour.In: Proceedings of the 5’th International Conference on Computer Aided Optimum Design of Structures. To appear, 1997.
Reference: [20] Mikelic, A.: Homogenization of the nonstationary Navier-Stoke equation in a domain with a grained boundary.Annali Mat. Pura. Appl. 158 (1991), 167–179. MR 1131849, 10.1007/BF01759303
Reference: [21] Milton, G. W.: On characterizing the set of possible effective tensors of composites: The Variational Method and the Translation Method.Comm. on Pure and Appl. Math. XLIII (1990), 63–125. Zbl 0751.73041, MR 1024190
Reference: [22] Nandakumaran, A. K.: Steady and evolution Stokes Equation in porous media with non-homogeneous boundary data; a homogenization progress.Differential and Integral equations 5 (1992), 73–93. MR 1141728
Reference: [23] Persson, L. E., Persson, L., Svanstedt, N., Wyller, J.: The Homogenization Method: An Introduction.Lund, Studentlitteratur, 1993. MR 1250833
Reference: [24] Sanches-Palencia, E.: Non Homogeneous Media and Vibration Theory.Lecture Notes in Physics 127. New York, Springer Verlag, 1980.
Reference: [25] Tartar, L.: Incompressible fluid flow through porous media—Convergence of the homogenization process.In: Appendix of, 1980.


Files Size Format View
AplMat_44-1999-4_4.pdf 1.147Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo