[1] G. Akrivis, V.  Dougalis: 
On a conservative, high-order accurate finite element scheme for the “parabolic” equation. Comput. Acoustics 1 (1989), 17–26. 
MR 1095058[3] S. C. Brenner, L. R. Scott: 
The Mathematical Theory of Finite Element Methods. Springer-Verlag, New York, Inc. A, 1994. 
MR 1278258[5] J. Douglas, T.  Dupont: 
The numerical solution of waterflooding problems in petroleum engineering by variational methods. Studies in Numerical Analysis  2, SIAM, Philadelphia, 1970. 
MR 0269141[6] J. Douglas, T. Dupont, H. H.  Rachford: The application of variational methods to waterflooding problems. J. Canad. Petroleum Tech. 8 (1969), 79–85.
[8] I. Faragó, S.  Korotov, P.  Neittaanmäki: 
Finite element analysis for the heat conduction equation with the third boundary condition. Annales Univ. Sci. Budapest 41 (1998), 183–195. 
MR 1691927[10] M. Křížek, P.  Neittaanmäki: 
Mathematical and Numerical Modelling in Electrical Engineering: Theory and Applications. Kluwer Academic Publishers, 1996. 
MR 1431889[11] M. Křížek, V.  Preiningerová: Calculation of the 3D  temperature field of synchronous and of induction machines by the finite element method. Elektrotechn. obzor 80 (1991), 78–84. (Czech)
[13] H. S. Price, J. C. Cavendich, R. S.  Varga: 
Numerical methods of higher-order accuracy for diffusion-convection equations. Soc. Petroleum Engrg.  J. 8 (1968), 293–303. 
DOI 10.2118/1877-PA[14] H. S. Price, R. S. Varga: 
Error bounds for semi-discrete Galerkin approximations of parabolic problems with applications to petroleum reservoir mechanics. Numerical Solution of Field Problems in Continuum Physics, AMS, Providence, 1970, pp. 74–94. 
MR 0266452[16] J. A. Scott, W. L.  Seward: Finite difference method for parabolic problems with nonsmooth initial data. Report of Oxford Univ. Comp. Lab. 86/22 (1987).
[17] G. Strang, G.  Fix: 
An Analysis of the Finite Element Method. Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1973. 
MR 0443377[18] V. Thomée: 
Galerkin Finite Element Methods for Parabolic Problems. Springer, Berlin, 1997. 
MR 1479170[19] R. S. Varga: 
Functional Analysis and Approximation Theory in Numerical Analysis. SIAM, Philadelphia, 1971. 
MR 0310504 | 
Zbl 0226.65064[20] M. F. Wheeler: 
A priori $L_2$ error estimates for Galerkin approximations to parabolic partial differential equations. SIAM J.  Numer. Anal. 10 (1973), 723–759. 
DOI 10.1137/0710062 | 
MR 0351124