[1] A.  Adjerid, J. E.  Flaherty and Y. J.  Wang: 
A posteriori error estimation with finite element methods of lines for one-dimensional parabolic systems. Numer. Math. 65 (1993), 1–21. 
DOI 10.1007/BF01385737 | 
MR 1217436[4] P. G.  Ciarlet: 
The Finite Element Method for Elliptic Problems. North-Holland Publishing Company, Amsterdam, New York, Oxford, 1978. 
MR 0520174 | 
Zbl 0383.65058[5] S.  Fučík, A.  Kufner: 
Nonlinear Differential Equations. Elsevier Scientific Publishing Company, Amsterdam, Oxford, New York, 1980. 
MR 0558764[6] H. Gajevski, K.  Gröger and K.  Zacharias: 
Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen. Akademie-Verlag, Berlin, 1974. 
MR 0636412[7] I. Hlaváček, M. Křížek and J.  Malý: 
On Galerkin approximations of a quasilinear nonpotential elliptic problem of a nonmonotone type. J. Math. Anal. Appl. 184 (1994), 168–189. 
DOI 10.1006/jmaa.1994.1192 | 
MR 1275952[8] S. Larsson, V. Thomée and N. Y.  Zhang: 
Interpolation of coefficients and transformation of the dependent variable in the finite element methods for the nonlinear heat equation. Math. Methods Appl. Sci. 11 (1989), 105–124. 
DOI 10.1002/mma.1670110108 | 
MR 0973559[9] P. K.  Moore: 
A posteriori error estimation with finite element semi- and fully discrete methods for nonlinear parabolic equations in one space dimension. SIAM J. Numer. Anal. 31 (1994), 149–169. 
DOI 10.1137/0731008 | 
MR 1259970 | 
Zbl 0798.65089[10] P. K.  Moore, J. E.  Flaherty: High-order adaptive solution of parabolic equations  I. Singly implicit Runge-Kutta methods and error estimation. Rensselaer Polytechnic Institute Report 91-12, Troy, NY, Department of Computer Science, Rensselaer Polytechnic Institute, 1991.
[11] P. K.  Moore, J. E.  Flaherty: 
High-order adaptive finite element-singly implicit Runge-Kutta methods for parabolic differential equations. BIT 33 (1993), 309–331. 
DOI 10.1007/BF01989753 | 
MR 1326022[12] T. Roubíček: Nonlinear differential equations and inequalities. Mathematical Institute of Charles University, Prague, in preparation.
[14] B.  Szabó, I.  Babuška: 
Finite Element Analysis. John Wiley & Sons, Inc., New York, Chichester, Brisbane, Toronto, Singapore, 1991. 
MR 1164869[15] V. Thomée: 
Galerkin Finite Element Methods for Parabolic Problems. Springer, Berlin, 1997. 
MR 1479170