[1] M.  Ainsworth, J. T.  Oden: 
A Posteriori Error Estimation in Finite Element Analysis. John Wiley & Sons, , 2000. 
MR 1885308[2] I.  Babuška, T.  Strouboulis: 
The Finite Element Method and Its Reliability. Oxford University Press, New York, 2001. 
MR 1857191[3] W.  Bangerth, R.  Rannacher: 
Adaptive Finite Element Methods for Differential Equations. Lectures in Mathematics ETH Zürich. Birkhäuser-Verlag, Basel, 2003. 
MR 1960405[4] R. Becker, R. Rannacher: 
A feed-back approach to error control in finite element methods: Basic analysis and examples. East-West J.  Numer. Math. 4 (1996), 237–264. 
MR 1430239[6] C.  Carstensen, S. A.  Funken: 
Constants in Clément-interpolation error and residual based a posteriori error estimates in finite element methods. East-West J.  Numer. Math. 8 (2000), 153–175. 
MR 1807259[7] Ph. G.  Ciarlet: 
The Finite Element Method for Elliptic Problems. Studies in Mathematics and its Applications, Vol.  4. North-Holland Publishing, Amsterdam-New York-Oxford, 1978. 
MR 0520174[8] K.  Eriksson, D.  Estep, P.  Hansbo, C.  Johnson: 
Introduction to adaptive methods for differential equations. Acta Numerica, A. Israel (ed.), Cambridge University Press, Cambridge, 1995, pp. 106–158. 
MR 1352472[9] I.  Faragó, J.  Karátson: 
Numerical Solution of Nonlinear Elliptic Problems via Preconditioning Operators: Theory and Applications. Advances in Computation. Theory and Practice, Vol.  11. Nova Science Publishers, Huntigton, 2002. 
MR 2106499[10] W.  Han: 
A Posteriori Error Analysis via Duality Theory. With Applications in Modeling and Numerical Approximations. Advances in Mechanics and Mathematics, Vol. 8. Springer-Verlag, New York, 2005. 
MR 2101057[11] A.  Hannukainen, S.  Korotov: 
Techniques for a posteriori error estimation in terms of linear functionals for elliptic type boundary value problems. Far East J.  Appl. Math. 21 (2005), 289–304. 
MR 2216003[12] A.  Hannukainen, S.  Korotov: 
Computational technologies for reliable control of global and local errors for linear elliptic type boundary value problems. Preprint  A494. Helsinki University of Technology (February  2006); accepted by  JNAIAM, J.  Numer. Anal. Ind. Appl. Math. in  2007. 
MR 2376087[13] I.  Hlaváček, J.  Chleboun, and I.  Babuška: 
Uncertain Input Data Problems and the Worst Scenario Method. Elsevier, Amsterdam, 2004. 
MR 2285091[14] I.  Hlaváček, M.  Křížek: 
On a superconvergent finite element scheme for elliptic systems  I, II, III. Apl. Mat. 32 (1987), 131–154, 200–213, 276–289. 
MR 0895878[15] S.  Korotov: 
A posteriori error estimation for linear elliptic problems with mixed boundary conditions. Preprint  A495, Helsinki University of Techology (March 2006). 
MR 2219926[17] S.  Korotov, P.  Neittaanmäki, and S.  Repin: 
A posteriori error estimation of goal-oriented quantities by superconvergence patch recovery. J.  Numer. Math. 11 (2003), 33–59. 
DOI 10.1163/156939503322004882 | 
MR 1976438[18] M.  Křížek, P.  Neittaanmäki: 
Mathematical and Numerical Modelling in Electrical Engineering. Theory and Practice. Mathematical Modelling: Theory and Applications, Vol.  1. Kluwer Academic Publishers, Dordrecht, 1996. 
MR 1431889[20] S. G.  Mikhlin: 
Constants in Some Inequalities of Analysis. A Wiley-Interscience Publication. John Wiley & Sons, Chichester, 1986. 
MR 0853915[21] P.  Neittaanmäki, S.  Repin: 
Reliable Methods for Computer Simulation. Error Control and A Posteriori Estimates. Studies in Mathematics and its Applications, Vol.  33. Elsevier, Amsterdam, 2004. 
MR 2095603[22] J.  Nečas: 
Les Méthodes Directes en Théorie des Équations Elliptiques. Academia, Prague, 1967. 
MR 0227584[24] S.  Repin: 
A posteriori error estimation for nonlinear variational problems by duality theory. Zap. Nauchn. Semin. S.-Peterburg, Otdel. Mat. Inst. Steklov. (POMI) 243 (1997), 201–214. 
MR 1629741 | 
Zbl 0904.65064[25] S.  Repin: 
Two-sided estimates of deviation from exact solutions of uniformly elliptic equations. Amer. Math. Soc. Transl. 209 (2003), 143–171. 
DOI 10.1090/trans2/209/06 | 
MR 2018375[26] S.  Repin, M.  Frolov: 
A posteriori estimates for the accuracy of approximate solutions of boundary value problems for equations of elliptic type. Zh. Vychisl. Mat. Mat. Fiz. 42 (2002), 1774–1787 (in Russian). 
MR 1971889[27] S.  Repin, S.  Sauter, A.  Smolianski: 
A posteriori error estimation for the Dirichlet problem with account of the error in the approximation of boundary conditions. Computing 70 (2003), 205–233. 
DOI 10.1007/s00607-003-0013-7 | 
MR 2011610[28] S.  Repin, S.  Sauter, A.  Smolianski: 
A posteriori error estimation for the Poisson equation with mixed Dirichlet/Neumann boundary conditions. J.  Comput. Appl. Math. 164/165 (2004), 601–612. 
DOI 10.1016/S0377-0427(03)00491-6 | 
MR 2056902[29] M.  Rüter, S.  Korotov, and Ch.  Steenbock: 
Goal-oriented error estimates based on different FE-solution spaces for the primal and the dual problem with applications to fracture mechanics. Comput. Mech. 39 (2007), 787–797. 
DOI 10.1007/s00466-006-0069-2 | 
MR 2298591[30] M.  Rüter, E.  Stein: 
Goal-oriented a posteriori error estimates in linear elastic fracture mechanics. Comput. Methods Appl. Mech. Eng. 195 (2006), 251–278. 
DOI 10.1016/j.cma.2004.05.032 | 
MR 2186137[32] R.  Verfürth: A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley-Teubner, Stuttgart, 1996.
[33] O. C. Zienkiewicz, J. Z. Zhu: 
A simple error estimator and adaptive procedure for practical engineering analysis. Int. J.  Numer. Methods Eng. 24 (1987), 337–357. 
DOI 10.1002/nme.1620240206 | 
MR 0875306