Previous |  Up |  Next

Article

Title: On general two-scale convergence and its application to the characterization of $G$-limits (English)
Author: Silfver, Jeanette
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 52
Issue: 4
Year: 2007
Pages: 285-302
Summary lang: English
.
Category: math
.
Summary: We characterize some $G$-limits using two-scale techniques and investigate a method to detect deviations from the arithmetic mean in the obtained $G$-limit provided no periodicity assumptions are involved. We also prove some results on the properties of generalized two-scale convergence. (English)
Keyword: homogenization
Keyword: $G$-convergence
Keyword: two-scale convergence
MSC: 35B27
MSC: 35J25
MSC: 49J45
idZBL: Zbl 1164.35318
idMR: MR2324728
DOI: 10.1007/s10492-007-0015-4
.
Date available: 2009-09-22T18:29:52Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/134676
.
Reference: [1] G.  Allaire, M.  Briane: Multiscale convergence and reiterated homogenization.Proc. R.  Soc. Edinb., Sect.  A 126 (1996), 297–342. MR 1386865
Reference: [2] G.  Allaire: Homogenization and two-scale convergence.SIAM J.  Math. Anal. 23 (1992), 1482–1518. Zbl 0770.35005, MR 1185639, 10.1137/0523084
Reference: [3] G.  Allaire: Shape Optimization by the Homogenization Method. Applied Mathematical Sciences  146.Springer-Verlag, New York, 2002. MR 1859696, 10.1007/978-1-4684-9286-6
Reference: [4] H. W.  Alt: Lineare Funktionalanalysis.Springer-Verlag, Berlin, 1985. Zbl 0577.46001
Reference: [5] A.  Bensoussan, J. -L. Lions, G.  Papanicolau: Asymptotic Analysis for Periodic Structures. Studies in Mathematics and Its Applications.North-Holland, Amsterdam-New York-Oxford, 1978. MR 0503330
Reference: [6] J.  Casado-Diaz, I.  Gayte: A general compactness result and its application to the two-scale convergence of almost periodic functions.C. R. Math. Acad. Sci. Paris, Ser.  1 323 (1996), 329–334. MR 1408763
Reference: [7] D.  Cioranescu, A.  Damlamian, and G. Griso: Periodic unfolding and homogenization.C.  R. Math. Acad. Sci. Paris, Ser. 1 335 (2002), 99–104. MR 1921004, 10.1016/S1631-073X(02)02429-9
Reference: [8] D.  Cioranescu, P.  Donato: An Introduction to Homogenization. Oxford Lecture Series in Mathematics and Its Applications.Oxford University Press, Oxford, 1999. MR 1765047
Reference: [9] V.  Chiadò Piat, A.  Defranceschi: Homogenization of monotone operators.Nonlinear Anal., Theory Methods Appl. 14 (1990), 717–732. MR 1049117, 10.1016/0362-546X(90)90102-M
Reference: [10] V.  Chiadò Piat, G.  Dal Maso, and A.  Defranceschi: $G$-convergence of monotone operators.Ann. Inst. Henri Poincaré, Anal. Non Linéaire 7 (1990), 123–160. MR 1065871, 10.1016/S0294-1449(16)30298-0
Reference: [11] L. C. Evans: Weak Convergence Methods for Nonlinear Partial Differential Equations. CBMS  Regional Conference Series in Mathematics, Vol.  74.1990. MR 1034481
Reference: [12] A.  Holmbom, J.  Silfver, N.  Svanstedt, and N.  Wellander: On two-scale convergence and related sequential compactness topics.Appl. Math. 51 (2006), 247–262. MR 2228665, 10.1007/s10492-006-0014-x
Reference: [13] D.  Lukkassen, G.  Nguetseng, and P.  Wall: Two-scale convergence.Int. J.  Pure Appl. Math. 2 (2002), 35–86. MR 1912819
Reference: [14] M. L.  Mascarenhas, A.-M.  Toader: Scale convergence in homogenization.Numer. Funct. Anal. Optimization. 22 (2001), 127–158. MR 1841866, 10.1081/NFA-100103791
Reference: [15] F.  Murat: $H$-convergence.Séminarie d’Analyse Fonctionnelle et Numérique, 1977–1978, Université d’Alger, Alger, 1978.
Reference: [16] F.  Murat: Compacité par compensation.Ann. Sc. Norm. Super. Pisa Cl. Sci., IV.  Ser. 5 (1978), 489–507. Zbl 0399.46022, MR 0506997
Reference: [17] F.  Murat: Compacité par compensation  II.In: Proc. Int. Meet. “Recent Methods in Nonlinear Analysis”, Pitagora, Bologna, , , 1979, pp. 245–256. Zbl 0427.35008, MR 0533170
Reference: [18] L.  Nechvátal: Alternative approaches to the two-scale convergence.Appl. Math. 49 (2004), 97–110. Zbl 1099.35012, MR 2043076, 10.1023/B:APOM.0000027218.04167.9b
Reference: [19] G.  Nguetseng: A general convergence result for a functional related to the theory of homogenization.SIAM J.  Math. Anal. 20 (1989), 608–623. Zbl 0688.35007, MR 0990867, 10.1137/0520043
Reference: [20] G. Nguetseng: Homogenization structures and applications I.Z.  Anal. Anwend. 22 (2003), 73–107. Zbl 1045.46031, MR 1962077
Reference: [21] J.  Silfver: Sequential convergence for functions and operators.Licentiate Thesis  10, Mid Sweden University, Östersund, 2004.
Reference: [22] S. Spagnolo: Sul limite delle soluzioni di problemi di Cauchy relativi all’equazione del calore.Ann. Scuola Norm. Super. Pisa, Sci. Fis. Mat, III.  Ser. 21 (1967), 657–699. (Italian) Zbl 0153.42103, MR 0225015
Reference: [23] S. Spagnolo: Sulla convergenza di soluzioni di equazioni paraboliche ed ellittiche.Ann. Sculoa Norm. Super. Pisa, Sci. Fis. Mat., III. Ser. 22 (1968), 571–597. (Italian) MR 0240443
Reference: [24] S.  Spagnolo: Convergence in energy for elliptic operators.In: Proc. 3rd Symp. Numer. Solut. Partial Differ. Equat., College Park, 1975, Academic Press, San Diego, 1976, pp. 469–498. Zbl 0347.65034, MR 0477444
Reference: [25] L. Tartar: Homogénéisation et compacité par compensation. Cours Peccot, Collège de France, Paris, March 1977.Unpublished, partly written in [15].
Reference: [26] L.  Tartar: Compensated compactness and applications to partial differential equations.Nonlinear Analysis and Mechanics, Heriott-Watt Symposium. Res. Notes Math.  39, Vol.  4, R. J. Knops (ed.), Pitman, Boston-London, 1979, pp. 136–212. Zbl 0437.35004, MR 0584398
Reference: [27] V. V. Zhikov, S. M.  Kozlov, O. A.  Oleinik: Homogenization of Differential Operators and Variational Problems.Springer-Verlag, Berlin, 1994. MR 1329546
.

Files

Files Size Format View
AplMat_52-2007-4_1.pdf 342.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo