Previous |  Up |  Next


hybrid adaptive controller; linear stochastic controlled system
The paper presents an alternative approach to the design of a hybrid adaptive controller of Linear Quadratic Gaussian (LQG) type for linear stochastic controlled system. The approach is based on the combination standard building blocks of discrete LQG adaptive controller with the non-standard technique of modelling of a controlled system and spline approximation of involved signals. The method could be of interest for control of systems with complex models, in particular distributed parameter systems.
[1] Boor C. De: Practical Guide to Splines. Springer–Verlag, New York 1978 Zbl 0987.65015
[2] Guy T. V., Kárný M.: Spline–based hybrid adaptive controller. In: Modelling, Identification and Control (M. H. Hamza, ed.), Acta Press, Anaheim, pp. 118–122
[3] Jazwinski A. M.: Stochastic Processes and Filtering Theory. Academic Press, New York 1970 Zbl 0203.50101
[4] Kárný M., Halousková A., Böhm J. R.Kulhavý, Nedoma P.: Design of linear quadratic adaptive control: Theory and algorithm for practice. Supplement to Kybernetika 21 (1985), Nos. 3–6
[5] Kárný M., Halousková A., Nagy I.: Modelling, identification and adaptive control of cross–direction basis weight of paper sheets. In: Internat. Conf. CONTROL 88, Oxford 1988, pp. 159–164
[6] Kárný M., Nagy I., Böhm J., Halousková A.: Design of spline–based selftuners. Kybernetika 26 (1990), 17–30
[7] Korn G. A., Korn T. M.: Mathematical Handbook for Scientists and Engineers. McGraw–Hill, New York 1968 MR 0220560 | Zbl 0535.00032
[8] Kornejchuk N. P.: Splines in the Approximation Theory (in Russian). Nauka, Moscow 1978
[9] Kulhavý R.: Restricted exponential forgetting in real–time identification. Automatica 23 (1987), 5, 598–600 DOI 10.1016/0005-1098(87)90054-9 | MR 0912352 | Zbl 0634.93073
[10] Ljung L.: System Identification: Theory for the User. Prentice–Hall, London 1987 Zbl 0615.93004
Partner of
EuDML logo