[1] Chen J., Patton R. J.: 
Robust model-based fault diagnosis for dynamic systems. Kluwer Academic Publishers, Dordrecht 1999 
Zbl 0920.93001[3] Choi H. H., Chung M. J.: 
Robust observer-based $H_{\infty }$ controller design for linear uncertain time-delay systems. Automatica 33 (1997), 9, 1749–1752 
MR 1481837[6] DeSouza C. E., Palhares R. M., Peres P. L. D.: Robust $H_\infty $ filtering for uncertain linear systems with multiple time-varying state delays: An LMI approach. In: Proc. 38th IEEE Conference on Decision and Control, Phoenix 1999, pp. 2023–2028
[7] Dugard L., (eds) E. I. Verriest: 
Stability and Control of Time-delay Systems. (Lecture Notes in Control and Inform. Sci. 228.) Springer Verlag, Berlin 1998 
MR 1482570[10] Fattouh A.: Robust Observation and Digital Control for Systems with Time-delays (in French). Ph. D. Thesis, I.N.P.G – Laboratoire d’Automatique de Grenoble, Grenoble 2000
[11] Fattouh A., Sename, O., Dion J.–M.: $H_{\infty }$ observer design for time-delay systems. In: Proc. 37th IEEE Conference on Decision and Control, Tampa 1998, pp. 4545–4546
[12] Fattouh A., Sename, O., Dion J.–M.: 
Robust observer design for time-delay systems: A Riccati equation approach. Kybernetika 35 (1999), 6, 753–764 
MR 1747974[13] Fattouh A., Sename, O., Dion J.–M.: An unknown input observer design for linear time-delay systems. In: Proc. 38th IEEE Conference on Decision and Control, Phoenix 1999, pp. 4222–4227
[14] Fattouh A., Sename, O., Dion J.–M.: $H_\infty $ controller and observer design for linear systems with point and distributed time-delays: An LMI approach. In: 2nd IFAC Workshop on Linear Time Delay Systems, Ancône 2000
[15] Fattouh A., Sename, O., Dion J.–M.: An LMI approach to robust observer design for linear time-delay systems. In: Proc. 39th IEEE Conference on Decision and Control, Sydney 2000
[16] Fattouh A., Sename, O., Dion J.–M.: Robust observer design for linear uncertain time-delay systems: A factorization approach. In: 14th Internat. Symposium on Mathematical Theory of Networks and Systems, Perpignan 2000
[18] Habets L.: 
Algebraic and Computational Aspects of Time-delay Systems. Ph. D. Thesis, Eindhoven University of Technology 1994 
MR 1276720 | 
Zbl 0804.93031[20] Ivanescu D., Snyder A. F., Dion J.–M., Dugard L., Georges, D., Hadjsaid N.: Robust stabilizing controller for an interconnected power system: A time delay approach. In: 14th Internat. Symposium on Mathematical Theory of Networks and Systems, Perpignan 2000
[21] Jankovic M., Kolmanovsky I.: Controlling nonlinear systems through time-delays: an automotive perspective. In: Proc. 8th European Control Conference ECC’99, Karlsruhe 1999
[23] Kučera V.: 
Discrete Linear Control: The Polynomial Equation Approach. Wiley, Chichester 1979 
MR 0573447 | 
Zbl 0432.93001[24] Lee E.B., Lu W. S.: 
Coefficient assignability for linear systems with delays. IEEE Trans. Automat. Control AC-29 (1984), 128–131 
MR 0764706 | 
Zbl 0561.93025[27] Lee J. H., Kim S. W., Kwon W. H.: 
Memoryless $h^{\infty }$ controllers for state delayed systems. IEEE Trans. Automat. Control 39 (1994), 1, 159–162 
DOI 10.1109/9.273356 | 
MR 1258692[29] Manitius A., Triggiani R.: 
Function space controllability of linear retarded systems: A derivation from abstract operator conditions. SIAM J. Control Optim. 16 (1978), 4, 599–645 
DOI 10.1137/0316041 | 
MR 0482505 | 
Zbl 0442.93009[31] Niculescu S. I.: On the stability and stabilization of linear systems with delayed-state (in French). Ph. D. Thesis, Laboratoire d’Automatique de Grenoble, INPG, 1996
[32] Niculescu S. I., Trofino–Neto A., Dion, J.–M., Dugard L.: Delay-dependent stability of linear systems with delayed state: An l. m.i. approach. In: Proc. 34th Conference on Decision and Control, New Orleans 1995, pp. 1495–1496
[33] Nobuyama E., Kitamori T.: Spectrum assignment and parameterization of all stabilizing compensators for time-delay systems. In: Proc. 29th Conference on Decision and Control, Honolulu 1990, pp. 3629–3634
[35] Picard P., Lafay J. F., Kučera V.: 
Feedback realization of nonsingular precompensators for linear systems with delays. IEEE Trans. Automat. Control 42 (1997), 6, 848–852 
DOI 10.1109/9.587342 | 
MR 1455716 | 
Zbl 0888.93029[36] Picard P., Sename, O., Lafay J. F.: Observers and observability indices for linear systems with delays. In: CESA 96, IEEE Conference on Computational Engineering in Systems Applications, volume 1, Lille 1996, pp. 81–86
[38] Richard S., Chevrel, P., Maillard B.: Active control of future vehicle drivelines. In: Proc. 38th IEEE Conference on Decision and Control, Phoenix 1999, pp. 3752–3767
[41] Sename O.: Unknown input robust observers for time-delay systems. In: 36th IEEE Conference on Decision and Control, San Diego 1997, pp. 1629–1630
[42] Sename O., Lafay J. F., Rabah R.: 
Controllability indices of linear systems with delays. Kybernetika 6 (1995), 559–580 
MR 1374145 | 
Zbl 0864.93023[43] Sontag E. D.: Linear systems over commutative rings; a survey. Ricerche Automat. 7 (1976), 1–16
[46] Wang Z., Huang, B., Unbehauen H.: Robust $H_{\infty }$ observer design for uncertain time-delay systems: (i) the continuous-time case. In: IFAC 14th World Congress, Beijing 1999, pp. 231–236
[49] Wonham W. M.: 
Linear Multivariable Control: A Geometric Approach. Springer Verlag, New York 1979 
MR 0569358 | 
Zbl 0609.93001[50] Yao Y. X., Zhang Y. M., Kovacevic R.: Parameterization of observers for time delay systems and its application in observer design. IEE Proc. – Control Theory Appl. 143 (1996), 3, 225–232