Previous |  Up |  Next


Title: Countable extension of triangular norms and their applications to the fixed point theory in probabilistic metric spaces (English)
Author: Hadžić, Olga
Author: Pap, Endre
Author: Budinčević, Mirko
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 38
Issue: 3
Year: 2002
Pages: [363]-382
Category: math
Keyword: probabilistic metric space
Keyword: triangular norm
Keyword: Menger space
Keyword: fixed point theorem
MSC: 47H10
MSC: 47H40
MSC: 47S50
MSC: 54E70
MSC: 54H25
MSC: 60H25
idZBL: Zbl 1265.54127
idMR: MR1944316
Date available: 2009-09-24T19:46:49Z
Last updated: 2015-03-25
Stable URL:
Reference: [1] J. Aczel: Lectures on Functional Equations and their Applications.Academic Press, New York 1969. MR 0208210
Reference: [2] O. Hadžič, E. Pap: On some classes of t-norms important in the fixed point theory.Bull. Acad. Serbe Sci. Art. Sci. Math. 25 (2000), 15-28. MR 1842812
Reference: [3] O. Hadžič, E. Pap: A fixed point theorem for multivalued mappings in probabilistic metric spaces and an application in fuzzy metric spaces.Fuzzy Sets and Systems 127 (2002), 333-344. MR 1899066
Reference: [4] O. Hadžič, E. Pap: Fixed Point Theory in Probabilistic Metric Spaces.Kluwer Academic Publishers, Dordrecht 2001. MR 1896451
Reference: [5] T. L. Hicks: Fixed point theory in probabilistic metric spaces.Univ. u Novom Sadu, Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 13 (1983), 63-72. Zbl 0574.54044, MR 0786431
Reference: [6] O. Kaleva, S. Seikalla: On fuzzy metric spaces.Fuzzy Sets and Systems 12 (1984), 215-229. MR 0740095, 10.1016/0165-0114(84)90069-1
Reference: [7] E. P. Klement R. Mesiar, and E. Pap: Triangular Norms.(Trends in Logic 8.) Kluwer Academic Publishers, Dordrecht 2000. MR 1790096
Reference: [8] E. P. Klement R. Mesiar, and E. Pap: Uniform approximation of associative copulas by strict and non-strict copulas.Illinois J. Math. J. 5 (2001), 4, 1393-1400. MR 1895466
Reference: [9] K. Menger: Statistical metric.Proc Nat. Acad. Sci. U.S.A. 28 (1942), 535-537. MR 0007576, 10.1073/pnas.28.12.535
Reference: [10] R. Mesiar, H. Thiele: On $T$-quantifiers and $S$-quantifiers: Discovering the World with Fuzzy Logic.(V. Novak and I. Perfilieva, eds., Studies in Fuzziness and Soft Computing vol. 57), Physica-Verlag, Heidelberg 2000, pp. 310-326. MR 1858106
Reference: [11] E. Pap: Null-Additive Set Functions.Kluwer Academic Publishers, Dordrecht and Ister Science, Bratislava 1995. Zbl 0968.28010, MR 1368630
Reference: [12] E. Pap O. Hadžič, and R. Mesiar: A fixed point theorem in probabilistic metric spaces and applications in fuzzy set theory.J. Math. Anal. Appl. 202 (1996), 433-449. MR 1406239, 10.1006/jmaa.1996.0325
Reference: [13] V. Radu: Lectures on probabilistic analysis. Surveys.(Lectures Notes and Monographs Series on Probability, Statistics & Applied Mathematics 2), Universitatea de Vest din Timisoara 1994.
Reference: [14] B. Schweizer, A. Sklar: Probabilistic Metric Spaces.Elsevier North-Holland, New York 1983. Zbl 0546.60010, MR 0790314
Reference: [15] V. M. Sehgal, A. T. Bharucha-Reid: Fixed points of contraction mappings on probabilistic metric spaces.Math. Systems Theory 6 (1972), 97-102. Zbl 0244.60004, MR 0310858, 10.1007/BF01706080
Reference: [16] R. M. Tardiff: Contraction maps on probabilistic metric spaces.J. Math. Anal. Appl. 165 (1992), 517-523. Zbl 0773.54033, MR 1155736, 10.1016/0022-247X(92)90055-I
Reference: [17] S. Weber: $\bot$-decomposable measures and integrals for Archimedean t-conorm $\bot$.J. Math. Anal. Appl. 101 (1984), 114-138. MR 0746230, 10.1016/0022-247X(84)90061-1


Files Size Format View
Kybernetika_38-2002-3_12.pdf 2.653Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo