| Title: | On the stabilizability of some classes of bilinear systems in $\Bbb R^3$ (English) | 
| Author: | Jerbi, Hamadi | 
| Language: | English | 
| Journal: | Kybernetika | 
| ISSN: | 0023-5954 | 
| Volume: | 38 | 
| Issue: | 4 | 
| Year: | 2002 | 
| Pages: | [457]-468 | 
| Summary lang: | English | 
| . | 
| Category: | math | 
| . | 
| Summary: | In this paper, we consider some classes of bilinear systems. We give sufficient condition for the asymptotic stabilization by using a positive and a negative feedbacks. (English) | 
| Keyword: | bilinear system | 
| Keyword: | stabilization by feedback | 
| MSC: | 93C10 | 
| MSC: | 93D15 | 
| idZBL: | Zbl 1265.93201 | 
| idMR: | MR1937140 | 
| . | 
| Date available: | 2009-09-24T19:47:39Z | 
| Last updated: | 2015-03-25 | 
| Stable URL: | http://hdl.handle.net/10338.dmlcz/135477 | 
| . | 
| Reference: | [1] Andriano V.: Some results on global and semi global stabilization of affines systems.Systems Control Lett. 33 (1998), 259–263 MR 1613086, 10.1016/S0167-6911(97)00074-1 | 
| Reference: | [2] Cima A., Llibre J.: Algebric and topological classification of the homogeneous cubic vector field in the plane.J. Math. Anal. Appl. 14 (1990), 420–448 MR 1050216, 10.1016/0022-247X(90)90359-N | 
| Reference: | [3] Čelikovský S.: On the stabilization of the homogeneuos bilinear systems.Systems Control Lett. 21 (1993), 503–510 MR 1249929, 10.1016/0167-6911(93)90055-B | 
| Reference: | [4] Chabour R., Sallet, G., Vivalda J. C.: Stabilization of nonlinear two dimensional system: a bilinear approach.Mathematics of Control, Signals and Systems (1996), 224–246 MR 1358071 | 
| Reference: | [5] Chabour O., Vivalda J. C.: Remark on local and global stabilization of homogeneuos bilinear systems.Systems Control Lett. 41 (2000), 141–143 MR 1831028, 10.1016/S0167-6911(00)00045-1 | 
| Reference: | [6] Gauthier J. P., Kupka I.: A separation principle for bilinear systems with dissipative drift.IEEE Trans. Automat. Control AC–37 (1992), 12, 1970–1974 Zbl 0778.93102, MR 1200614, 10.1109/9.182484 | 
| Reference: | [7] Hahn W.: Stability of Motion.Springer Verlag, Berlin 1967 Zbl 0189.38503, MR 0223668 | 
| Reference: | [8] Hammouri H., Marques J. C.: Stabilization of homogeneuos bilinear systems.Appl. Math. Lett. 7 (1994), 1, 23–28 MR 1349888, 10.1016/0893-9659(94)90047-7 | 
| Reference: | [9] Iggider A., Kalitine, B., Outbib R.: Semidefinite Lyapunov Functions Stability and Stabilization.(Mathematics of Control, Signals, and Systems 9.) Springer–Verlag, London 1996, pp. 95–106 MR 1418816, 10.1007/BF01211748 | 
| Reference: | [10] Iggider A., Kalitine, B., Sallet G.: Lyapunov theorem with semidefinite functions proceedings.In: Proc. 14th Triennial IFAC World Congress IFAC 99, Beijing 1999, pp. 231–236 | 
| Reference: | [11] Jerbi H., Hammami M. A. C.Vivalda J.: On the stabilization of homogeneous affine systems.In: Proc. 2nd IEEE Mediterranean Symposium on New Directions in Control $\&$ Automation T2.3.4, 1994, pp. 319–326 | 
| Reference: | [12] Jurdjevic V., Quinn J. P.: Controllability and stability.J. of Differentials 28 (1978), 381–389 Zbl 0417.93012, MR 0494275, 10.1016/0022-0396(78)90135-3 | 
| Reference: | [13] Ryan E. P., Buckingham N. J.: On asymptotically stabilizing feedback control of bilinear systems.IEEE Trans. Automat. Control AC–28 (1983), 8, 863–864 Zbl 0535.93050 | 
| . |