Previous |  Up |  Next


fuzzy metric; fuzzy distance; fuzzy metric space; fuzzy contraction
In the paper, three different ways of constructing distances between vaguely described objects are shown: a generalization of the classic distance between subsets of a metric space, distance between membership functions of fuzzy sets and a fuzzy metric introduced by generalizing a metric space to fuzzy-metric one. Fuzzy metric spaces defined by Zadeh’s extension principle, particularly to $\mathbb{R}^{n}$ are dealt with in detail.
[1] Bednář J.: The fuzzy rational database system FSearch 2. 0. In: Proc. 6th Internat. Conference on Soft Computing MENDEL, Brno 2000, pp. 232–237
[2] Bednář J.: Properties of fuzzy metrics on $R^{n}$. In: Proc. East West Fuzzy Colloquium 2002 and 10th Zittau Fuzzy Colloquium, Zittau 2002, pp. 2–6
[3] Gerla G., Volpe R.: The definition of distance and diameter in fuzzy set theory. Stutia Univ. Babes–Bolyai Math. 31 (1986), 21–26 MR 0911862 | Zbl 0594.54004
[4] Kaleva O., Seikkala S.: On fuzzy metric spaces. Fuzzy Sets and Systems 12 (1984), 215–229 DOI 10.1016/0165-0114(84)90069-1 | MR 0740095 | Zbl 0558.54003
[5] Klir G., Yuan B.: Fuzzy Set and Fuzzy Logic: Theory and Applications. Prentice Hall, Englewood Cliffs, NJ 1995 MR 1329731
[6] Mareš M.: Computation over Fuzzy Quantities. CRC Press, Boca Raton 1994 MR 1327525 | Zbl 0859.94035
[7] Osman A.: Fuzzy metric spaces and fixed fuzzy set theorem. Bull. Malaysian Math. Soc. 6 (1983), 1, 1–4 MR 0733877
[8] Rudin W.: Real and Complex Analysis. McGraw–Hill, New York 1984 Zbl 1038.00002
[9] Szmidt E., Kacprzyk J.: Distances between intuitionistic fuzzy sets. Fuzzy Sets and Systems 114 (2000), 505–518 DOI 10.1016/S0165-0114(98)00244-9 | MR 1775286 | Zbl 0961.03050
Partner of
EuDML logo