Previous |  Up |  Next

Article

Title: On exact null controllability of Black-Scholes equation (English)
Author: Sakthivel, Kumarasamy
Author: Balachandran, Krishnan
Author: Sowrirajan, Rangarajan
Author: Kim, Jeong-Hoon
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 44
Issue: 5
Year: 2008
Pages: 685-704
Summary lang: English
.
Category: math
.
Summary: In this paper we discuss the exact null controllability of linear as well as nonlinear Black–Scholes equation when both the stock volatility and risk-free interest rate influence the stock price but they are not known with certainty while the control is distributed over a subdomain. The proof of the linear problem relies on a Carleman estimate and observability inequality for its own dual problem and that of the nonlinear one relies on the infinite dimensional Kakutani fixed point theorem with $L^2$ topology. (English)
Keyword: Black–Scholes equation
Keyword: volatility
Keyword: controllability
Keyword: observability
Keyword: Carleman estimates
MSC: 45K05
MSC: 47N10
MSC: 91B28
MSC: 91G10
MSC: 93B05
MSC: 93C20
MSC: 93E03
idZBL: Zbl 1177.93021
idMR: MR2479312
.
Date available: 2009-09-24T20:39:10Z
Last updated: 2012-06-06
Stable URL: http://hdl.handle.net/10338.dmlcz/135882
.
Reference: [1] Adams R. A., Fournier J. F.: Sobolev Spaces.Second edition. Academic Press, New York 2003 Zbl 1098.46001, MR 2424078
Reference: [2] Khodja F. Ammar, Benabdallah, A., Dupaix C.: Null controllability of some reaction diffusion systems with one control force.J. Math. Anal. Appl. 320 (2006), 928–943 MR 2226005
Reference: [3] Amster P., Averbuj C. G., Mariani M. C.: Solutions to a stationary nonlinear Black–Scholes type equation.J. Math. Anal. Appl. 276 (2002), 231–238 Zbl 1027.60077, MR 1944348
Reference: [4] Amster P., Averbuj C. G., Mariani M. C., Rial D.: A Black–Scholes option pricing model with transaction costs.J. Math. Anal. Appl. 303 (2005), 688–695 Zbl 1114.91044, MR 2122570
Reference: [5] Anita S., Barbu V.: Null controllability of nonlinear convective heat equation.ESAIM: Control, Optimization and Calculus of Variations 5 (2000), 157–173 MR 1744610
Reference: [6] Barbu V.: Controllability of parabolic and Navier–Stokes equations.Scientiae Mathematicae Japonicae 56 (2002), 143–211 Zbl 1010.93054, MR 1911840
Reference: [7] Black F., Scholes M.: The pricing of options and corporate liabilities.J. Political Economics 81 (1973), 637–659 Zbl 1092.91524
Reference: [8] Bouchouev I., Isakov V.: The inverse problem of option pricing.Inverse Problems 13 (1997), L11–L17 Zbl 0894.90014, MR 1474358
Reference: [9] Bouchouev I., Isakov V.: Uniqueness, stability and numerical methods for the inverse problem that arises in financial markets.Inverse problems 15 (1999), R95–R116 Zbl 0938.35190, MR 1696930
Reference: [10] Chae D., Imanivilov, O. Yu., Kim M. S.: Exact controllability for semilinear parabolic equations with Neumann boundary conditions.J. Dynamical Control Systems 2 (1996), 449–483 MR 1420354
Reference: [11] Doubova A., Fernandez-Cara E., Gonzalez-Burgos, M., Zuazua E.: On the controllability of parabolic systems with a nonlinear term involving the state and the gradient.SIAM J. Control Optim. 41 (2002), 789–819 Zbl 1038.93041, MR 1939871
Reference: [12] Egger H., Engl H. W.: Tikhonov regularization applied to the inverse problem of option pricing: convergence analysis and rates.Inverse Problems 21 (2005) 1027–1045 Zbl 1205.65194, MR 2146819
Reference: [13] Fursikov A. V., Imanuvilov O. Yu.: Controllability of Evolution Equations.Lecture Notes Series 34, Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul 1996 Zbl 0862.49004, MR 1406566
Reference: [14] Hörmander L.: Linear Partial Differential Operators I – IV.Springer–Verlag, Berlin 1985
Reference: [15] Imanuvilov O. Yu.: Boundary controllability of parabolic equations.Sbornik Mathematics 187 (1995), 879–900 MR 1349016
Reference: [16] Imanuvilov O. Yu., Yamamoto M.: Carleman inequalities for parabolic equations in Sobolev spaces of negative order and exact controllability for semilinear parabolic equations.Publ. Res. Inst. Math. Sci. 39 (2003), 227–274 Zbl 1065.35079, MR 1987865
Reference: [17] Ingber L., Wilson J. K.: Statistical mechanics of financial markets: Exponential modifications to Black–Scholes.Mathematical and Computer Modelling 31 (2000) 167–192 Zbl 1042.91524, MR 1761486
Reference: [18] Jódar L., Sevilla-Peris P., Cortes J. C., Sala R.: A new direct method for solving the Black–Scholes equations.Appl. Math. Lett. 18 (2005), 29–32 MR 2121550
Reference: [19] Kangro R., Nicolaides R.: Far field boundary conditions for Black–Scholes equations.SIAM J. Numer. Anal. 38 (2000), 1357–1368 Zbl 0990.35013, MR 1790037
Reference: [20] Sakthivel K., Balachandran, K., Sritharan S. S.: Controllability and observability theory of certain parabolic integro-differential equations.Comput. Math. Appl. 52 (2006), 1299–1316 MR 2307079
Reference: [21] Sakthivel K., Balachandran, K., Lavanya R.: Exact controllability of partial integrodifferential equations with mixed boundary conditions.J. Math. Anal. Appl. 325 (2007), 1257–1279 Zbl 1191.93013, MR 2270082
Reference: [22] Sowrirajan R., Balachandran K.: Determination of a source term in a partial differential equation arising in finance.Appl. Anal. (to appear) Zbl 1170.35328, MR 2536788
Reference: [23] Widdicks M., Duck P. W., Andricopoulos A. D., Newton D. P.: The Black–Scholes equation revisited: Asymptotic expansions and singular perturbations.Mathematical Finance 15 (2005), 373–371 Zbl 1124.91342, MR 2132196
Reference: [24] Wilmott I., Howison, S., Dewynne J.: The Mathematics of Financial Derivatives.Cambridge University Press, Cambridge 1995 Zbl 0842.90008, MR 1357666
.

Files

Files Size Format View
Kybernetika_44-2008-5_6.pdf 832.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo